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Abstract

The 3rd annual installment of the ActivityNet Large-
Scale Activity Recognition Challenge, held as a full-day
workshop in CVPR 2018, focused on the recognition of
daily life, high-level, goal-oriented activities from user-
generated videos as those found in internet video portals.
The 2018 challenge hosted six diverse tasks which aimed to
push the limits of semantic visual understanding of videos
as well as bridge visual content with human captions. Three
out of the six tasks were based on the ActivityNet dataset,
which was introduced in CVPR 2015 and organized hier-
archically in a semantic taxonomy. These tasks focused on
tracing evidence of activities in time in the form of propos-
als, class labels, and captions. In this installment of the
challenge, we hosted three guest tasks to enrich the under-
standing of visual information in videos. The guest tasks
focused on complementary aspects of the activity recogni-
tion problem at large scale and involved three challenging
and recently compiled datasets: the Kinetics-600 dataset
from Google DeepMind, the AVA dataset from Berkeley and
Google, and the Moments in Time dataset from MIT and
IBM Research.

1. Introduction
This challenge was the 3rd annual installment of the

ActivityNet Large-Scale Activity Recognition Challenge
held as a full-day workshop in CVPR 2018. It focused
on the recognition of daily life, high-level, goal-oriented
activities from user-generated videos as those found in
internet video portals. The 2018 challenge hosted six
diverse tasks which aimed to push the limits of semantic
visual understanding of videos as well as bridge visual

content with human captions. Three out of the six tasks
were based on the ActivityNet dataset [1], which was
introduced in CVPR 2015 and organized hierarchically
in a semantic taxonomy. These tasks focused on tracing
evidence of activities in time in the form of proposals, class
labels, and captions [4]. In this installment of the challenge,
we hosted three guest tasks to enrich the understanding of
visual information in videos. The guest tasks focused on
complementary aspects of the activity recognition problem
at large scale and involved three challenging and recently
compiled datasets: the Kinetics-600 dataset [3] from AVA
dataset [2] from Berkeley and Google, and the Moments in
Time dataset [5] from MIT and IBM Research.

How to Cite the Challenge Results? We attach to this doc-
ument a copy of all the papers submitted to the workshop.
Please cite this summary by citing the short summary ver-
sion on arXiv. In addition, if you want to cite a particular
workshop paper, please search online (e.g. on arXiv) to see
if the paper has been independently published and cite it
from that source too; otherwise, just cite the arXiv version
of this challenge summary.

2. Main Challenge Tasks
The challenge had three main tasks: Temporal Action

Proposals (ActivityNet), Temporal Action Localization
(ActivityNet), and Dense-Captioning Events in Videos
(ActivityNet Captions). In the following subsections, we
describe each task’s objective, dataset, and evaluation met-
ric. We finally give the top-3 results on each task.

2.1. Task 1: Temporal Action Proposals

Description and Objective. In many large-scale video
analysis scenarios, one is interested in localizing and rec-
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ognizing human activities occurring in short temporal inter-
vals within long untrimmed videos. Current approaches for
activity detection still struggle to handle large-scale video
collections and efficiently addressing this task remains elu-
sive to our visual systems. This is in part due to the
computational complexity of current action recognition ap-
proaches and the lack of methods that propose fewer inter-
vals in the video, where activity processing can be focused.
These set of candidate temporal segments are widely known
as Action Proposals.

To be applicable at large-scales and in practical scenar-
ios, a useful action proposal method is driven by two com-
peting goals. (i) The proposal method must be computa-
tionally efficient in representing, encoding, and scoring a
temporal segment. (ii) The proposal method must be dis-
criminative of activities that we are interested in, so as to
only retrieve temporal segments that contain visual infor-
mation indicative of these activity classes. Thus, this task is
intended to push the state-of-the-art in action proposal gen-
eration algorithms forward.

Dataset. This task is evaluated on the ActivityNet version
1.3 dataset [1]. The dataset consists of more than 648 hours
of untrimmed videos from a total of 20K videos. It contains
200 different daily activities such as: walking the dog, long
jump, and vacuuming floor. The distribution among train-
ing, validation, and testing is roughly 50%, 25%, and 25%
of the total videos, respectively.

Evaluation Metric. We use the area under the Average Re-
call vs. Average Number of Proposals per Video (AR-AN)
curve as the evaluation metric for this task. A proposal is
a true positive if it has a temporal intersection over union
(tIoU) with a ground-truth segment that is greater than or
equal to a given threshold (e.g. tIoU > 0.5). AR is de-
fined as the mean of all recall values using tIoU between 0.5
and 0.95 (inclusive) with a step size of 0.05. AN is defined
as the total number of proposals divided by the number of
videos in the testing subset. We consider 100 bins for AN,
centered at values between 1 and 100 (inclusive) with a step
size of 1, when computing the values on the AR-AN curve.

Top Results. Table 1 shows the top-3 submissions. Each
entry in the table links to the corresponding paper submitted
by the team. We also append all other papers submitted to
the workshop to the end of this summary.

Rank Organization AUC
1 Baidu Vis 71.00
2 Shanghai Jiao Tong University 69.30
3 YH Technologies 67.78

Table 1. The top-3 submissions for task 1.

2.2. Task 2: Temporal Action Localization

Description and Objective. Despite the recent advances
in large-scale video analysis, temporal action localization
remains as one of the most challenging unsolved problems
in computer vision. This search problem hinders various
real-world applications ranging from consumer video sum-
marization to surveillance, crowd monitoring, and elderly
care. Therefore, we are committed to push forward the de-
velopment of efficient and accurate automated methods that
can search and retrieve events and activities in video collec-
tions. This task is intended to encourage computer vision
researchers to design high performance action localization
systems.
Dataset. This task is evaluated on the ActivityNet version
1.3 dataset [1]. The dataset consists of more than 648 hours
of untrimmed videos from a total of 20K videos. It contains
200 different daily activities such as: walking the dog, long
jump, and vacuuming floor. The distribution among train-
ing, validation, and testing is roughly 50%, 25%, and 25%
of the total videos, respectively.
Evaluation Metric. We use the Interpolated Average Pre-
cision (AP) to evaluate the results on each activity category.
The performance on the dataset is measured by the mean AP
(mAP) over all the activity categories. To determine if a de-
tection is a true positive, we inspect the tIoU with a ground
truth segment, and check whether it is greater or equal to a
given threshold (e.g. tIoU > 0.5). The official metric used
in this task is the average mAP, which is defined as the mean
of all mAP values computed with tIoU thresholds between
0.5 and 0.95 (inclusive) with a step size of 0.05.
Top Results. Table 2 shows the top-3 submissions. Each
entry in the table links to the corresponding paper submitted
by the team. We also append all other papers submitted to
the workshop to the end of this summary.

Rank Organization Average mAP
1 Shanghai Jiao Tong University 38.53
2 YH Technologies 35.49
3 Baidu Vis 35.27

Table 2. The top-3 submissions for task 2.

2.3. Task 3: Dense-Captioning Events in Videos

Description and Objective. Most natural videos contain
numerous events. For example, in a video of a man playing
a piano, the video might also contain another man dancing
or a crowd clapping. This task aims to tackle the challenges
of dense-captioning events, which involves both detecting
and describing events in a video.
Dataset. This task is evaluated on the ActivityNet Cap-
tions dataset [4]. The dataset connects videos to a series of
temporally annotated sentence descriptions. Each sentence
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covers a unique segment of the video, describing multiple
events that occur. These events may occur over very long
or short periods of time and are not limited in any capac-
ity, allowing them to co-occur. On average, each of the
20K videos in ActivityNet Captions contains 3.65 tempo-
rally localized sentences, resulting in a total of 100K sen-
tences. The number of sentences per video follows a rela-
tively normal distribution. Furthermore, as the video dura-
tion increases, the number of sentences also increases. Each
sentence has an average length of 13.48 words, which is
also normally distributed.
Evaluation Metric. Inspired by the dense-image caption-
ing metric, we use a similar metric to measure the joint abil-
ity of our model to both localize and caption events. This
metric computes the average precision (AP) across tIoU
thresholds of 0.3, 0.5, and 0.7, when captioning the top-
1000 proposals. We measure precision of captions using the
traditional evaluation metrics: Bleu, METEOR and CIDEr.
Top Results. Table 3 shows the top-2 submissions. Each
entry in the table links to the corresponding paper submitted
by the team. We also append all other papers submitted to
the workshop to the end of this summary.

Rank Organization Average Meteor
1 RUC and CMU 8.53
2 YH Technologies 8.13

Table 3. The top-2 submissions for task 3.

3. Hosted Challenge Tasks

In this installment of the challenge, we hosted three guest
tasks to enrich the understanding of visual information in
videos. These guest tasks focused on complementary as-
pects of the activity recognition problem at large scale and
involved three challenging and recently compiled datasets:
the Kinetics-600 dataset [3] from Google DeepMind, the
AVA dataset [2] from Berkeley and Google, and the Mo-
ments in Time dataset [5] from MIT and IBM Research.

3.1. Task A: Trimmed Activity Recognition

Description and Objective. This task is intended to eval-
uate the ability of algorithms to recognize activities in
trimmed video sequences. Here, videos contain a single ac-
tivity, and all the clips have a standard duration.
Dataset. This task is evaluated on the Kinetics-600 dataset
[3]. Kinetics is a large-scale, high-quality dataset of
YouTube video URLs which include a diverse range of hu-
man focused actions. The dataset consists of approximately
500K video clips, and covers 600 human action classes with
at least 600 video clips for each action class. Each clip lasts
around 10s and is labeled with a single class. All of the clips
have been through multiple rounds of human annotation,

and each is taken from a unique YouTube video. The ac-
tions cover a broad range of classes including human-object
interactions such as playing instruments, as well as human-
human interactions such as shaking hands and hugging.
Evaluation Metric. We use the top-k accuracy on the test-
ing set as the official metrics for this task. For each video,
an algorithm should produce k labels lj , j = 1, .., k. The
ground truth label for the video is g. The error of the al-
gorithm for that video would be: e = minj d(lj , g), with
d(x, y) = 0 if x = y and 1 otherwise. The overall error
score for an algorithm is the average error over all videos.
We will use k = 1 and k = 5 and the winner of the chal-
lenge is selected based on the average of these two errors.
Top Results. Table 4 shows the top-3 submissions. Each
entry in the table links to the corresponding paper submitted
by the team. We also append all other papers submitted to
the workshop to the end of this summary.

Rank Organization Average Error
1 Baidu Vis 10.99
2 YH Technologies 11.69
3 QINIU and SARI 12.20
Table 4. The top-3 submissions for task A.

3.2. Task B: Spatio-temporal Action Localization

Description and Objective. This task is intended to eval-
uate the ability of algorithms to localize human actions in
space and time. Each labeled video segment can contain
multiple subjects, each performing potentially multiple ac-
tions. The goal is to identify these subjects and actions over
continuous video clips. This task is divided into two tracks.
Track #1 is strictly computer vision, i.e. participants are re-
quested not to use signals derived from audio, metadata,
etc. Track #2 lifts this restriction, allowing creative solu-
tions that leverage any input modalities.
Dataset. This task is evaluated on the AVA Dataset version
v2.1 [2]. The AVA dataset densely annotates 80 atomic vi-
sual actions in 430 15-minute movie clips, where actions are
localized in space and time, resulting in 1.58M action labels
with multiple labels per human occurring frequently. Clips
are drawn from contiguous segments of movies, to open the
door for temporal reasoning about activities. The dataset is
split into 235 videos for training, 64 videos for validation,
and 131 videos for test.
Evaluation Metric. We use the Frame-mAP at spatial IoU
≥ 0.5 as the metric for evaluating algorithms on this task.
Since action frequency in AVA follows the natural distribu-
tion, the metric is averaged across the top 60 most common
action classes in AVA.
Top Results. Tables 5 and 6 show the top-3 submissions
for each track. Each entry in the tables links to the corre-
sponding paper submitted by the team. We also append all
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other papers submitted to the workshop to the end of this
summary.

Rank Organization mAP@0.5IoU
1 Tsinghua University 21.08
2 Google DeepMind 21.03
3 YH Technologies 19.60

Table 5. The top-3 submissions for task B (computer vision only
track).

Rank Organization mAP@0.5IoU
1 Tsinghua University 20.99
2 YH Technologies 19.60
3 UMD 16.76

Table 6. The top-3 submissions for task B (full track).

3.3. Task C: Trimmed Event Recognition

Description and Objective. This task is intended to eval-
uate the ability of algorithms to classify events in trimmed
3-second videos. Here, videos contain a single activity, and
all clips have a standard duration of 3 seconds. This task is
divided into two tracks. The first track uses the Moments
in Time dataset [5], a new large-scale dataset for video un-
derstanding, which has 800K videos in the training set. The
second track use the Moments in Time Mini dataset, a sub-
set of Moments in Time with 100k videos provided in the
training set.
Dataset. This task is evaluated on the Moments in Time
Dataset [5]. Moments in Time Dataset is a large-scale col-
lection of 1M 3-second videos corresponding to spatial-
audio-temporal events.
Evaluation Metric. We use the top-k accuracy on the test-
ing set as the official metrics for this task. For each video,
an algorithm should produce k labels lj , j = 1, .., k. The
ground truth label for the video is g. The error of the al-
gorithm for that video would be: e = minj d(lj , g), with
d(x, y) = 0 if x = y and 1 otherwise. The overall error
score for an algorithm is the average error over all videos.
We will use k = 1 and k = 5 and the winner of the chal-
lenge is selected based on the average of these two errors.
Top Results. Tables 7 and 8 show the top-3 submissions
for each track. Each entry in the tables links to the corre-
sponding paper submitted by the team. We also append all
other papers submitted to the workshop to the end of this
summary.

Rank Organization Average Accuracy
1 Hikvision 52.91
2 Megvii 51.26
3 Qiniu AtLab 50.06

Table 7. The top-3 submissions for task C (full track).

Rank Organization Average Accuracy
1 Sun Yat-Sen University 47.72
2 Beihang University 45.49
3 National Taiwan University 45.10

Table 8. The top-3 submissions for task C (mini track).

References
[1] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Car-

los Niebles. ActivityNet: A large-scale video benchmark for
human activity understanding. In CVPR, 2015.

[2] C. Gu, C. Sun, S. Vijayanarasimhan, C. Pantofaru, D. A. Ross,
G. Toderici, Y. Li, S. Ricco, R. Sukthankar, C. Schmid, et al.
Ava: A video dataset of spatio-temporally localized atomic
visual actions. CVPR, 2018.

[3] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vi-
jayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Su-
leyman, and A. Zisserman. The kinetics human action video
dataset. CoRR, abs/1705.06950, 2017.

[4] R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. C. Niebles.
Dense-captioning events in videos. In International Confer-
ence on Computer Vision (ICCV), 2017.

[5] M. Monfort, B. Zhou, S. A. Bargal, T. Yan, A. Andonian,
K. Ramakrishnan, L. Brown, Q. Fan, D. Gutfruend, C. Von-
drick, et al. Moments in time dataset: one million videos for
event understanding.

4



YH Technologies at ActivityNet Challenge 2018

Ting Yao and Xue Li
YH Technologies Co., Ltd, Beijing, China
{tingyao.ustc, miya.lixue}@gmail.com

Abstract

This notebook paper presents an overview and compar-
ative analysis of our systems designed for the following
five tasks in ActivityNet Challenge 2018: temporal action
proposals, temporal action localization, dense-captioning
events in videos, trimmed action recognition, and spatio-
temporal action localization.

Temporal Action Proposals (TAP): To generate tempo-
ral action proposals from videos, a three-stage workflow is
particularly devised for TAP task: a coarse proposal net-
work (CPN) to generate long action proposals, a temporal
convolutional anchor network (CAN) to localize finer pro-
posals, and a proposal reranking network (PRN) to further
identify proposals from previous stages. Specifically, CP-
N explores three complementary actionness curves (namely
point-wise, pair-wise, and recurrent curves) that represen-
t actions at different levels to generate coarse proposals,
while CAN refines these proposals by a multi-scale cascad-
ed 1D-convolutional anchor network.

Temporal Action Localization (TAL): For TAL task, we
follow the standard “detection by classification” frame-
work, i.e., first generate proposals by our temporal ac-
tion proposal system and then classify proposals with two-
stream P3D classifier.

Dense-Captioning Events in Videos (DCEV): For D-
CEV task, we firstly adopt our temporal action proposal sys-
tem mentioned above to localize temporal proposals of in-
terest in video, and then generate the descriptions for each
proposal. Specifically, RNNs encode a given video and its
detected attributes into a fixed dimensional vector, and then
decode it to the target output sentence. Moreover, we ex-
tend the attributes-based CNNs plus RNNs model with poli-
cy gradient optimization and retrieval mechanism to further
boost video captioning performance.

Trimmed Action Recognition (TAR): We investigate and
exploit multiple spatio-temporal clues for trimmed action
recognition task, i.e., frame, short video clip and motion
(optical flow) by leveraging 2D or 3D convolutional neural
networks (CNNs). The mechanism of different quantization
methods is studied as well. All activities are finally classi-

fied by late fusing the predictions from each clue.
Spatio-temporal Action Localization (SAL): Our sys-

tem for SAL includes two main components: i.e., Recurren-
t Tubelet Proposal (RTP) networks and Recurrent Tubelet
Recognition (RTR) networks. The RTP initializes action
proposals of the start frame through a Region Proposal Net-
work on the feature map and then estimates the movements
of proposals in the next frame in a recurrent manner. The
action proposals of different frames are linked to form the
tubelet proposals. The RTR capitalizes on a multi-channel
architecture, where in each channel, a tubelet proposal is
fed into a CNN plus LSTM network to recurrently recognize
action in the tubelet.

1. Introduction
Recognizing activities in videos is a challenging task as

video is an information-intensive media with complex vari-
ations. In particular, an activity may be represented by dif-
ferent clues including frame, short video clip, motion (op-
tical flow) and long video clip. In this work, we aim at in-
vestigating these multiple clues to activity classification in
trimmed videos, which consist of a diverse range of human
focused actions.

Besides detecting actions in manually trimmed short
video, researchers tend to develop techniques for detecting
actions in untrimmed long videos in the wild. This trend
motivates another challenging task—temporal action local-
ization which aims to localize action in untrimmed long
videos. We also explore this task in this work. How-
ever, most of the natural videos in the real world are
untrimmed videos with complex activities and unrelated
background/context information, making it hard to direct-
ly localize and recognize activities in them. One pos-
sible solution is to quickly localize temporal chunks in
untrimmed videos containing human activities of interest
and then conduct activity recognition over these temporal
chunks, which largely simplifies the activity recognition for
untrimmed videos. Generating such temporal action chunks
in untrimmed videos is known as the task of temporal action
proposals, which is also exploited here.
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Figure 1. Three Pseudo-3D blocks.

Furthermore, action detection with accurate spatio-
temporal location in videos, i.e., spatio-temporal action lo-
calization, is another challenging task in video understand-
ing and we study this task in this work. Compared to tem-
poral action localization which temporally localizes actions,
this task is more difficult due to the complex variations and
large spatio-temporal search space.

In addition to the above four tasks tailored to activity
which is usually the name of action/event in videos, the task
of dense-captioning events in videos is explored here which
goes beyond activities by describing numerous events with-
in untrimmed videos with multiple natural sentences.

The remaining sections are organized as follows. Sec-
tion 2 presents all the features which will be adopted in our
systems, while Section 3 details the feature quantization s-
trategies. Then the descriptions and empirical evaluations
of our systems for five tasks are provided in Section 4-8 re-
spectively, followed by the conclusions in Section 9.

2. Video Representations
We extract the video representations from multiple clues

including frame, short clip, motion and long clip.
Frame. To extract frame-level representations

from video, we uniformly sample 25 frames for each
video/proposal, and then use pre-trained 2D CNNs as
frame-level feature extractors. We choose the most popular
2D CNNs in image classification—ResNet [4].

Short Clip. In addition to frame, we take the inspiration
from the most popular 3D CNN architecture C3D [20] and
devise a novel Pseudo-3D Residual Net (P3D ResNet) ar-
chitecture [16] to learn spatio-temporal video clip represen-
tation in deep networks. Particularly, we develop variants
of bottleneck building blocks to combine 2D spatial and 1D
temporal convolutions, as shown in Figure 1. The whole
P3D ResNet is then constructed by integrating Pseudo-3D
blocks into a residual learning framework at different place-
ments. We fix the sample rate as 25 per video.

Motion. To model the change of consecutive frames,
we apply another CNNs to optical flow “image,” which
can extract motion features between consecutive frames.

When extracting motion features, we follow the setting of
[22], which fed optical flow images, consisting of two-
direction optical flow from multiple consecutive frames, in-
to ResNet/P3D ResNet network in each iteration. The sam-
ple rate is also set to 25 per video.

Audio. Audio feature is the most global feature (though
entire video) in our system. Although audio feature itself
can not get very good result for action recognition, but it can
be seen as powerful additional feature, since some specific
actions are highly related to audio information. Here we
utilize MFCC to extract audio features.

3. Feature Quantization
In this section, we describe two quantization methods to

generate video-level/clip-level representations.
Average Pooling. Average pooling is the most com-

mon method to extract video-level features from consecu-
tive frames, short clips and long clips. For a set of frame-
level or clip-level features F = {f1, f2, ..., fN}, the video-
level representations are produced by simply averaging all
the features in the set:

Rpooling = 1
N

∑
i:fi∈F

fi , (1)

where Rpooling denotes the final representations.
Compact Bilinear Pooling. Moreover, we utilize Com-

pact Bilinear Pooling (CBP) [3] to produce highly discrim-
inative clip-level representation by capturing the pairwise
correlations and modeling interactions between spatial loca-
tions within this clip. In particular, given a clip-level feature
Ft ∈ RW×H×D (W , H and D are the width, height and
channel numbers), Compact Bilinear Pooling is performed
by kernelized feature comparison, which is defined as

RCBP =

S∑

j=1

S∑

k=1

〈φ(Ft,j), φ(Ft,k)〉 , (2)

where S = W × H is the size of the feature map, Ft,j is
the region-level feature of j-th spatial location in Ft, φ(·) is
a low dimensional projection function, and 〈·〉 is the second
order polynomial kernel.

4. Trimmed Action Recognition
4.1. System

Our trimmed action recognition framework is shown in
Figure 2 (a). In general, the trimmed action recognition pro-
cess is composed of three stages, i.e., multi-stream feature
extraction, feature quantization and prediction generation.
For deep feature extraction, we follow the multi-stream ap-
proaches in [6, 13, 14, 15], which represented input video
by a hierarchical structure including individual frame, short
clip and consecutive frame. In addition to visual features,
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Figure 2. Frameworks of our proposed (a) trimmed action recognition system, (b) temporal action proposals system, (c) dense-captioning
events in videos system, and (d) spatio-temporal action localization system.

the most commonly used audio feature MFCC is exploited
to further enrich the video representations. After extraction
of raw features, different quantization and pooling methods
are utilized on different features to produce global represen-
tations of each trimmed video. Finally, the predictions from
different streams are linearly fused by the weights tuned on
validatoin set.

4.2. Experiment Results

Table 1 shows the performances of all the components in
our trimmed action recognition system. Overall, the CBP
on P3D ResNet (128-frame) achieves the highest top1 accu-
racy (78.47%) and top5 accuracy (93.99%) of single com-
ponent. And by additionally apply this model on both frame
and optical flow, the two-stream P3D achieves an abvious
improvement, which gets top1 accuracy of 80.91% and top5
accuracy of 94.96%. For the final submission, we linearly
fuse all the components.

5. Temporal Action Proposals
5.1. System

Figure 2 (b) shows the framework of temporal action
proposals, which is mainly composed of three stages:

Coarse Proposal Network (CPN). In this stage, propos-
al candidates are generated by watershed temporal action-
ness grouping algorithm (TAG) based on actionness curve.
Considering the diversity of action proposals, three action-
ness measures (namely point-wise, pair-wise and recurrent)
that are complementary to each other are leveraged to pro-
duce the final actionness curve.

Temporal Convolutional Anchor Network (CAN).
Next, we feed long proposals into our temporal convolu-
tional anchor network for finer proposal generation. The
temporal convolutional anchor network consists of multi-
ple 1D convolution layers to generate temporal instances
for proposal/background binary classification and bounding
box regression.

Proposal Reranking Network (PRN). Given the short

3



Table 1. Comparison of different components in our trimmed action recognition framework on Kinetics validation set for trimmed action
recognition task.

Stream Feature Layer Quantization Top1 Top5

Frame ResNet pool5 Ave 74.11% 91.51%
ResNet res5c CBP 74.97% 91.48%

Short Clip
P3D ResNet (16-frame) pool5 Ave 76.22% 92.92%
P3D ResNet (128-frame) pool5 Ave 77.94% 93.75%
P3D ResNet (128-frame) res5c CBP 78.47% 93.99%

Motion
P3D ResNet (16-flow) pool5 Ave 64.37% 85.76%
P3D ResNet (128-flow) pool5 Ave 69.87% 89.44%
P3D ResNet (128-flow) res5c CBP 71.07% 90.00%

Audio ResNet pool5 Ave 21.91% 38.49%
Two-stream P3D P3D ResNet (128-frame&flow) res5c CBP 80.91% 94.96%
Fusion all 83.75% 95.95%

Table 2. Area Under the average recall vs. average number of pro-
posals per video Curve (AUC) of frame/flow input for P3D [16]
network on ActivityNet validation set for temporal action propos-
als task.

Stream CPN CAN PRN AUC

Frame

√
60.27%√ √
63.20%√ √ √
64.21%

Optical Flow

√
59.83%√ √
63.43%√ √ √
64.02%

Fusion all 67.36%

proposals from the coarse stage and fine-grained propos-
als from the temporal convolutional anchor network, a r-
eranking network is utilized for proposal refinement. To
take video temporal structures into account, we extend the
current part of proposal with its’ start and end part. The
duration of start and end parts are half of the current part.
The proposal is then represented by concatenating features
of each part to leverage the context information. In our ex-
periments, the top 100 proposals are finally outputted.

5.2. Experiment Results

Table 2 shows the action proposal AUC performances of
frame/optical flow input to P3D [16] with different stages in
our system. The two stream P3D architecture is pre-trained
on Kinetics [5] dataset. For all the single stream runs with
different stages, the setting based on all three stages combi-
nation achieves the highest AUC. For the final submission,
we combine all the proposals from the two streams and then
select the top 100 proposals based on their weighted rank-
ing probabilities. The linear fusion weights are tuned on
validation set.

Table 3. Performance comparison of different methods on Activi-
tyNet validation set for temporal action localization task. Results
are evaluated by mAP with different IoU thresholds and average
mAP of IoU threshold from 0.5 to 0.95 with step 0.05.

mAP 0.5 0.75 0.95 Avg mAP
Shou et al. [19] 43.83 25.88 0.21 22.77
Xiong et al. [23] 39.12 23.48 5.49 23.98
Lin et al. [8] 48.99 32.91 7.87 32.26
Ours 51.40 33.61 8.13 34.22

6. Temporal Action Localization
6.1. System

Without loss of generality, we follow the standard “de-
tection by classification” framework, i.e., first generate pro-
posals by temporal action proposals system and then classi-
fy proposals. The action classifier is trained with the above
trimmed action recognition system (i.e., two-stream P3D)
over the 200 categories on ActivityNet dataset [1].

6.2. Experiment Results

Table 3 shows the action localization mAP performance
of our approach and baselines on validation set. Our ap-
proach consistently outperforms other state-of-the-art ap-
proaches in different IoU threshold and achieves 34.22%
average mAP on validation set.

7. Dense-Captioning Events in Videos
7.1. System

The main goal of dense-captioning events in videos is
jointly localizing temporal proposals of interest in videos
and then generating the descriptions for each propos-
al/video clip. Hence we firstly leverage the temporal action
proposal system described above in Section 5 to localize
temporal proposals of events in videos (2 proposals for each
video). Then, given each temporal proposal (i.e., video seg-
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Table 4. Performance of our dense-captioning events in videos system on ActivityNet captions validation set, where B@N , M, R and C
are short for BLEU@N , METEOR, ROUGE-L and CIDEr-D scores. All values are reported as percentage (%).

Model B@1 B@2 B@3 B@4 M R C
LSTM-A3 13.78 7.12 3.53 1.72 7.61 13.30 27.07
LSTM-A3 + policy gradient 11.65 6.05 3.02 1.34 8.28 12.63 14.62
LSTM-A3 + policy gradient + retrieval 11.91 6.13 3.04 1.35 8.30 12.65 15.61

ment describing one event), our dense-captioning system
runs two different video captioning modules in parallel—
the generative module for generating caption via the LSTM-
based sequence learning model, and the retrieval module
which can directly copy sentences from other visually sim-
ilar video segments through KNN. Specifically, the genera-
tive module with LSTM is inspired from the recent success-
es of probabilistic sequence models leveraged in vision and
language tasks (e.g., image captioning [21, 25], video cap-
tioning [9, 10, 12], video generation from captions [11] and
dense video captioning [7, 24]). We mainly utilize the third
design LSTM-A3 in [26] which firstly encodes attribute rep-
resentations into LSTM and then transforms video repre-
sentations into LSTM at the second time step is adopted as
the basic architecture. Note that we employ the policy gra-
dient optimization method with reinforcement learning [18]
to boost the video captioning performances specific to ME-
TEOR metric. For the retrieval module, we utilize KNN to
find the visually similar video segments based on the ex-
tracted video representations. The captions associated with
the top similar video segments are regarded as sentence can-
didates in retrieval module. In the experiment, we mainly
choose the top 300 nearest neighbors for generating sen-
tence candidates. Finally, a sentence re-ranking module is
exploited to rank and select the final most consensus caption
from the two parallel video captioning modules by consider-
ing the lexical similarity among all the sentence candidates.
The overall architecture of our dense-captioning system is
shown in Figure 2 (c).

7.2. Experiment Results

Table 4 shows the performances of our proposed dense-
captioning events in videos system. Here we compare three
variants derived from our proposed model. In particular, by
additionally incorporating the policy gradient optimization
scheme into the basic LSTM-A3 architecture, we can clear-
ly observe the performance boost in METEOR. Moreover,
our dense-captioning model (LSTM-A3 + policy gradien-
t + retrieval) is further improved by injecting the sentence
candidates from retrieval module in METEOR.

8. Spatio-temporal Action Localization
8.1. System

Figure 2 (d) shows the framework of spatio-temporal ac-
tion localization, which includes two main components:

Table 5. Comparison of different components in our RTR on AVA
validation set for spatio-temporal action localization task.

Stream Feature mAP@IoU=0.5
Frame ResNet 13.68
Short Clip P3D ResNet (16-frame) 19.12
Short Clip P3D ResNet (128-frame) 19.40
Flow P3D ResNet (16-frame) 15.20
Fusion - 22.20

Recurrent Tubelet Proposal (RTP) networks. The Re-
current Tubelet Proposal networks produces action propos-
als in a recurrent manner. Specifically, it initializes action
proposals of the start frame through a Region Proposal Net-
work (RPN) [17] on the feature map. Then the movement
of each proposal in the next frame is estimated from three
inputs: feature maps of both current and next frames, and
the proposal in current frame. Simultaneously, a sibling
proposal classifier is utilized to infer the actionness of the
proposal. To form the tubelet proposals, action proposals
in two consecutive frames are linked by taking both their
actionness and overlap ratio into account, followed by the
temporal trimming on tubelet.

Recurrent Tubelet Recognition (RTR) networks. The
Recurrent Tubelet Recognition networks capitalizes on a
multi-channel architecture for tubelet proposal recognition.
For each proposal, we extract three different semantic-level
features, i.e., the features on proposal-cropped image, the
features with RoI pooling on the proposal, and the features
on whole frame. These features implicitly encode the s-
patial context and scene information, which could enhance
the recognition capability on specific categories. After that,
each of them is fed into a LSTM to model the temporal dy-
namics for tubelet recognition.

8.2. Experiment Results

We construct our RTP based on [2], which is mainly
trained with the single RGB frames. For RTR, we extract
the region representations with RoI pooling from multiple
clues including frame, clip and motion. Table 5 shows the
performances of all the components in our RTR. Overall,
the P3D ResNet trained on clips (128 frames) achieves the
highest frame-mAP (19.40%) of single component. For the
final submission, all the components are linearly fused us-
ing the weights tuned on validation set. The final mAP on
validation set is 22.20%.
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9. Conclusion
In ActivityNet Challenge 2018, we mainly focused on

multiple visual features, different strategies of feature quan-
tization and video captioning from different dimensions.
Our future works include more in-depth studies of how fu-
sion weights of different clues could be determined to boost
the action recognition/temporal action proposals/temporal
action localization/spatio-temporal action localization per-
formance and how to generate open-vocabulary sentences
for events in videos.
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Abstract. In this technical paper, we describe our approach used in the submis-
sion to the temporal action proposal generation (task 1) and temporal action
localization (detection) (task 2) of ActivityNet Challenge 2018. Since we be-
lieve that the main bottleneck for temporal action localization is the quality of
action proposals, we mainly focus on the temporal action proposal generation
task and adopt a novel proposal generation method we proposed recently, called
Boundary-Sensitive Network (BSN) [1]. To generate high quality proposals, BSN
first locates temporal boundaries with high probabilities, then directly combines
these boundaries as proposals. Finally, with Boundary-Sensitive Proposal feature,
BSN retrieves proposals by evaluating the confidence of whether a proposal con-
tains an action within its region. BSN achieves the state-of-the-art performances
on both temporal action proposal generation task and temporal action localization
task. The full version of our paper can be found in [1].

Keywords: Temporal action proposal generation · Temporal action detection ·
Temporal convolution · Untrimmed video

1 Introduction

Nowadays, with fast development of digital cameras and Internet, the number of videos
is continuously booming, making automatic video content analysis methods widely re-
quired. One major branch of video analysis is action recognition, which aims to classify
manually trimmed video clips containing only one action instance. However, videos in
real scenarios are usually long, untrimmed and contain multiple action instances along
with irrelevant contents. This problem requires algorithms for another challenging task:
temporal action detection, which aims to detect action instances in untrimmed video
including both temporal boundaries and action classes. It can be applied in many areas
such as video recommendation and smart surveillance.

Similar with object detection in spatial domain, temporal action detection task can
be divided into two stages: proposal and classification. Proposal generation stage aims
to generate temporal video regions which may contain action instances, and classifi-
cation stage aims to classify classes of candidate proposals. Although classification
methods have reached convincing performance, the detection precision is still low in

? Corresponding author.



2 Boundary Sensitive Network

Fig. 1: Overview of our approach. Given an untrimmed video, (1) we evaluate bound-
aries and actionness probabilities of each temporal location and generate proposals
based on boundary probabilities, and (2) we evaluate the confidence scores of proposals
with proposal-level feature to get retrieved proposals.

many benchmarks [2, 3]. Thus recently temporal action proposal generation has re-
ceived much attention [4–7], aiming to improve the detection performance by improv-
ing the quality of proposals. High quality proposals should come up with two key prop-
erties: (1) proposals can cover truth action regions with both high recall and high tem-
poral overlap, (2) proposals are retrieved so that high recall and high overlap can be
achieved using fewer proposals to reduce the computation cost of succeeding steps.

To achieve high proposal quality, a proposal generation method should generate pro-
posals with flexible temporal durations and precise temporal boundaries, then retrieve
proposals with reliable confidence scores, which indicate the probability of a proposal
containing an action instance. Most recently proposal generation methods [4–6, 8] gen-
erate proposals via sliding temporal windows of multiple durations in video with regular
interval, then train a model to evaluate the confidence scores of generated proposals for
proposals retrieving, while there is also method [7] making external boundaries regres-
sion. However, proposals generated with pre-defined durations and intervals may have
some major drawbacks: (1) usually not temporally precise; (2) not flexible enough to
cover variable temporal durations of ground truth action instances, especially when the
range of temporal durations is large.

To address these issues and generate high quality proposals, we propose the Boundary-
Sensitive Network (BSN), which adopts “local to global” fashion to locally combine
high probability boundaries as proposals and globally retrieve candidate proposals us-
ing proposal-level feature as shown in Fig 1. In detail, BSN generates proposals in three
steps. First, BSN evaluates the probabilities of each temporal location in video whether
it is inside or outside, at or not at the boundaries of ground truth action instances, to
generate starting, ending and actionness probabilities sequences as local information.
Second, BSN generates proposals via directly combining temporal locations with high
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starting and ending probabilities separately. Using this bottom-up fashion, BSN can
generate proposals with flexible durations and precise boundaries. Finally, using fea-
tures composed by actionness scores within and around proposal, BSN retrieves pro-
posals by evaluating the confidence of whether a proposal contains an action. These
proposal-level features offer global information for better evaluation.

In summary, the main contributions of our work are three-folds:
(1) We introduce a new architecture (BSN) based on “local to global” fashion to

generate high quality temporal action proposals, which locally locates high bound-
ary probability locations to achieve precise proposal boundaries and globally evaluates
proposal-level feature to achieve reliable proposal confidence scores for retrieving.

(2) Extensive experiments demonstrate that our method achieves significantly bet-
ter proposal quality than other state-of-the-art proposal generation methods, and can
generate proposals in unseen action classes with comparative quality.

(3) Integrating our method with existing action classifier into detection framework
leads to significantly improved performance on temporal action detection task.

2 Related work

Action recognition. Action recognition is an important branch of video related research
areas and has been extensively studied. Earlier methods such as improved Dense Tra-
jectory (iDT) [9, 10] mainly adopt hand-crafted features such as HOF, HOG and MBH.
In recent years, convolutional networks are widely adopted in many works [11–14] and
have achieved great performance. Typically, two-stream network [11, 12, 14] learns ap-
pearance and motion features based on RGB frame and optical flow field separately.
C3D network [13] adopts 3D convolutional layers to directly capture both appearance
and motion features from raw frames volume. Action recognition models can be used
for extracting frame or snippet level visual features in long and untrimmed videos.
Object detection and proposals. Recent years, the performance of object detection
has been significantly improved with deep learning methods. R-CNN [15] and its vari-
ations [16, 17] construct an important branch of object detection methods, which adopt
“detection by classifying proposals” framework. For proposal generation stage, besides
sliding windows [18], earlier works also attempt to generate proposals by exploiting
low-level cues such as HOG and Canny edge [19, 20]. Recently some methods [17,
21, 22] adopt deep learning model to generate proposals with faster speed and stronger
modelling capacity. In this work, we combine the properties of these methods via evalu-
ating boundaries and actionness probabilities of each location using neural network and
adopting “local to global” fashion to generate proposals with high recall and accuracy.

Boundary probabilities are also adopted in LocNet [23] for revising the horizon-
tal and vertical boundaries of existing proposals. Our method differs in (1) BSN aims
to generate while LocNet aims to revise proposals and (2) boundary probabilities are
calculated repeatedly for all boxes in LocNet but only once for a video in BSN.
Temporal action detection and proposals. Temporal action detection task aims to
detect action instances in untrimmed videos including temporal boundaries and action
classes, and can be divided into proposal and classification stages. Most detection meth-
ods [8, 24, 25] take these two stages separately, while there is also method [26, 27] tak-
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ing these two stages jointly. For proposal generation, earlier works [28–30] directly
use sliding windows as proposals. Recently some methods [4–8] generate proposals
with pre-defined temporal durations and intervals, and use multiple methods to evaluate
the confidence score of proposals, such as dictionary learning [5] and recurrent neural
network [6]. TAG method [25] adopts watershed algorithm to generate proposals with
flexible boundaries and durations in local fashion, but without global proposal-level
confidence evaluation for retrieving. In our work, BSN can generate proposals with
flexible boundaries meanwhile reliable confidence scores for retrieving.

Recently temporal action detection method [31] detects action instances based on
class-wise start, middle and end probabilities of each location. Our method is superior
than [31] in two aspects: (1) BSN evaluates probabilities score using temporal convolu-
tion to better capture temporal information and (2) “local to global” fashion adopted in
BSN brings more precise boundaries and better retrieving quality.

3 Our Approach

3.1 Problem Definition

An untrimmed video sequence can be denoted as X = {xn}lvn=1 with lv frames, where
xn is the n-th frame in X . Annotation of video X is composed by a set of action in-
stances Ψg = {ϕn = (ts,n, te,n)}Ng

n=1, where Ng is the number of truth action instances
in video X , and ts,n, te,n are starting and ending time of action instance ϕn separately.
Unlike detection task, classes of action instances are not considered in temporal ac-
tion proposal generation. Annotation set Ψg is used during training. During prediction,
generated proposals set Ψp should cover Ψg with high recall and high temporal overlap.

3.2 Video Features Encoding

To generate proposals of input video, first we need to extract feature to encode visual
content of video. In our framework, we adopt two-stream network [12] as visual en-
coder, since this architecture has shown great performance in action recognition task
[32] and has been widely adopted in temporal action detection and proposal generation
tasks [25, 26, 33]. Two-stream network contains two branches: spatial network operates
on single RGB frame to capture appearance feature, and temporal network operates on
stacked optical flow field to capture motion information.

To extract two-stream features, as shown in Fig 2(a), first we compose a snippets
sequence S = {sn}lsn=1 from video X , where ls is the length of snippets sequence. A
snippet sn = (xtn , otn) includes two parts: xtn is the tn-th RGB frame in X and otn is
stacked optical flow field derived around center frame xtn . To reduce the computation
cost, we extract snippets with a regular frame interval σ, therefore ls = lv/σ. Given
a snippet sn, we concatenate output scores in top layer of both spatial and temporal
networks to form the encoded feature vector ftn = (fS,tn , fT,tn), where fS,tn , fT,tn

are output scores from spatial and temporal networks separately. Thus given a snippets
sequence S with length ls, we can extract a feature sequence F = {ftn}lsn=1. These
two-stream feature sequences are used as the input of BSN.
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Fig. 2: The framework of our approach. (a) Two-stream network is used for encoding
visual features in snippet-level. (b) The architecture of Boundary-Sensitive Network:
temporal evaluation module handles the input feature sequence, and evaluates start-
ing, ending and actionness probabilities of each temporal location; proposal genera-
tion module generates proposals with high starting and ending probabilities, and con-
struct Boundary-Sensitive Proposal (BSP) feature for each proposal; proposal evalua-
tion module evaluates confidence score of each proposal using BSP feature. (c) Finally,
we use Soft-NMS algorithm to suppress redundant proposals by decaying their scores.

3.3 Boundary-Sensitive Network

To achieve high proposal quality with both precise temporal boundaries and reliable
confidence scores, we adopt “local to global” fashion to generate proposals. In BSN, we
first generate candidate boundary locations, then combine these locations as proposals
and evaluate confidence score of each proposal with proposal-level feature.
Network architecture. The architecture of BSN is presented in Fig 2(b), which con-
tains three modules: temporal evaluation, proposal generation and proposal evaluation.
Temporal evaluation module is a three layers temporal convolutional neural network,
which takes the two-stream feature sequences as input, and evaluates probabilities of
each temporal location in video whether it is inside or outside, at or not at boundaries
of ground truth action instances, to generate sequences of starting, ending and action-
ness probabilities respectively. Proposal generation module first combines the temporal
locations with separately high starting and ending probabilities as candidate proposals,
then constructs Boundary-Sensitive Proposal (BSP) feature for each candidate proposal
based on actionness probabilities sequence. Finally, proposal evaluation module, a mul-
tilayer perceptron model with one hidden layer, evaluates the confidence score of each
candidate proposal based on BSP feature. Confidence score and boundary probabilities
of each proposal are fused as the final confidence score for retrieving.
Temporal evaluation module. The goal of temporal evaluation module is to evaluate
starting, ending and actionness probabilities of each temporal location, where three bi-
nary classifiers are needed. In this module, we adopt temporal convolutional layers upon
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(a) Generate proposals (b) Construct BSP feature

Fig. 3: Details of proposal generation module. (a) Generate proposals. First, to generate
candidate boundary locations, we choose temporal locations with high boundary prob-
ability or being a probability peak. Then, we combine candidate starting and ending
locations as proposals when their duration satisfying condition. (b) Construct BSP fea-
ture. Given a proposal and actionness probabilities sequence, we can sample actionness
sequence in starting, center and ending regions of proposal to construct BSP feature.

feature sequence, with good modelling capacity to capture local semantic information
such as boundaries and actionness probabilities.

A temporal convolutional layer can be simply denoted as Conv(cf , ck, Act), where
cf , ck and Act are filter numbers, kernel size and activation function of temporal con-
volutional layer separately. As shown in Fig 2(b), the temporal evaluation module can
be defined as Conv(512, 3, Relu) → Conv(512, 3, Relu) → Conv(3, 1, Sigmoid),
where the three layers have same stride size 1. Three filters with sigmoid activation in
the last layer are used as classifiers to generate starting, ending and actionness prob-
abilities separately. For convenience of computation, we divide feature sequence into
non-overlapped windows as the input of temporal evaluation module. Given a fea-
ture sequence F , temporal evaluation module can generate three probability sequences
PS =

{
pstn
}ls
n=1

, PE =
{
petn
}ls
n=1

and PA =
{
patn
}ls
n=1

, where pstn , petn and patn are
respectively starting, ending and actionness probabilities in time tn.
Proposal generation module. The goal of proposal generation module is to generate
candidate proposals and construct corresponding proposal-level feature. We achieve this
goal in two steps. First we locate temporal locations with high boundary probabilities,
and combine these locations to form proposals. Then for each proposal, we construct
Boundary-Sensitive Proposal (BSP) feature.

As shown in Fig 3(a), to locate where an action likely to start, for starting proba-
bilities sequence PS , we record all temporal location tn where pstn (1) has high score:
pstn > 0.9 or (2) is a probability peak: pstn > pstn−1

and pstn > pstn+1
. These locations

are grouped into candidate starting locations setBS = {ts,i}NS

i=1, where NS is the num-
ber of candidate starting locations. Using same rules, we can generate candidate ending
locations set BE from ending probabilities sequence PE . Then, we generate temporal
regions via combing each starting location ts fromBS and each ending location te from
BS . Any temporal region [ts, te] satisfying d = te − ts ∈ [dmin, dmax] is denoted as
a candidate proposal ϕ, where dmin and dmax are minimum and maximum durations
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of ground truth action instances in dataset. Thus we can get candidate proposals set
Ψp = {ϕi}Np

i=1, where Np is the number of proposals.
To construct proposal-level feature as shown in Fig 3(b), for a candidate proposal

ϕ, we denote its center region as rC = [ts, te] and its starting and ending region as
rS = [ts − d/5, ts + d/5] and rE = [te − d/5, te + d/5] separately. Then, we sample
the actionness sequence PA within rc as fAc by linear interpolation with 16 points. In
starting and ending regions, we also sample actionness sequence with 8 linear interpo-
lation points and get fAs and fAe separately. Concatenating these vectors, we can get
Boundary-Sensitive Proposal (BSP) feature fBSP = (fAs ,fAc ,fAe ) of proposal ϕ. BSP
feature is highly compact and contains rich semantic information about corresponding
proposal. Then we can represent a proposal as ϕ = (ts, te, fBSP ).
Proposal evaluation module. The goal of proposal evaluation module is to evaluate
the confidence score of each proposal whether it contains an action instance within
its duration using BSP feature. We adopt a simple multilayer perceptron model with
one hidden layer as shown in Fig 2(b). Hidden layer with 512 units handles the input
of BSP feature fBSP with Relu activation. The output layer outputs confidence score
pconf with sigmoid activation, which estimates the overlap extent between candidate
proposal and ground truth action instances. Thus, a generated proposal can be denoted
as ϕ = (ts, te, pconf , p

s
ts , p

e
te), where psts and pete are starting and ending probabilities

in ts and te separately. These scores are fused to generate final score during prediction.

3.4 Training of BSN

In BSN, temporal evaluation module is trained to learn local boundary and actionness
probabilities from video features simultaneously. Then based on probabilities sequence
generated by trained temporal evaluation module, we can generate proposals and corre-
sponding BSP features and train the proposal evaluation module to learn the confidence
score of proposals. The training details are introduced in this section.
Temporal evaluation module. Given a video X , we compose a snippets sequence S
with length ls and extract feature sequence F from it. Then we slide windows with
length lw = 100 in feature sequence without overlap. A window is denoted as ω =
{Fω, Ψω}, where Fω and Ψω are feature sequence and annotations within the window
separately. For ground truth action instance ϕg = (ts, te) in Ψω , we denote its region
as action region rag and its starting and ending region as rsg = [ts − dg/10, ts + dg/10]
and reg = [te − dg/10, te + dg/10] separately, where dg = te − ts.

Taking Fω as input, temporal evaluation module generates probabilities sequence
PS,ω , PE,ω and PA,ω with same length lw. For each temporal location tn within Fω ,
we denote its region as rtn = [tn − ds/2, tn + ds/2] and get corresponding probability
scores pstn , petn and patn from PS,ω , PE,ω and PA,ω separately, where ds = tn − tn−1
is temporal interval between two snippets. Then for each rtn , we calculate its IoP ra-
tio with rag , rsg and reg of all ϕg in Ψω separately, where IoP is defined as the overlap
ratio with groundtruth proportional to the duration of this proposal. Thus we can rep-
resent information of tn as φn = (patn , p

s
tn , p

e
tn , g

a
tn , g

s
tn , g

e
tn), where gatn , gstn , getn are

maximum matching overlap IoP of action, starting and ending regions separately.
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Given a window of matching information as Φω = {φn}lsn=1, we can define training
objective of this module as a three-task loss function. The overall loss function consists
of actionness loss, starting loss and ending loss:

LTEM = λ · Laction
bl + Lstart

bl + Lend
bl , (1)

where λ is the weight term and is set to 2 in BSN. We adopt the sum of binary logistic
regression loss function Lbl for all three tasks, which can be denoted as:

Lbl =
1

lw

lw∑

i=1

(
α+ · bi · log(pi) + α− · (1− bi) · log(1− pi)

)
, (2)

where bi = sign(gi − θIoP ) is a two-values function for converting matching score
gi to {0, 1} based on threshold θIoP , which is set to 0.5 in BSN. Let l+ =

∑
gi and

l− = lw − l+, we can set α+ = lw
l− and α− = lw

l+ , which are used for balancing the
effect of positive and negative samples during training.
Proposal evaluation module. Using probabilities sequences generated by trained tem-
poral evaluation module, we can generate proposals using proposal generation mod-
ule: Ψp = {ϕn = (ts, te, fBSP )}Np

n=1. Taking fBSP as input, for a proposal ϕ, con-
fidence score pconf is generated by proposal evaluation module. Then we calculate its
Intersection-over-Union (IoU) with all ϕg in Ψg , and denote the maximum overlap score
as giou. Thus we can represent proposals set as Ψp = {ϕn = {ts, te, pconf , giou}}Np

n=1.
We split Ψp into two parts based on giou: Ψpos

p for giou > 0.7 and Ψneg
p for giou < 0.3.

For data balancing, we take all proposals in Ψpos
p and randomly sample the proposals in

Ψneg
p to insure the ratio between two sets be nearly 1:2.

The training objective of this module is a simple regression loss, which is used to
train a precise confidence score prediction based on IoU overlap. We can define it as:

LPEM =
1

Ntrain

Ntrain∑

i=1

(pconf,i − giou,i)2, (3)

where Ntrain is the number of proposals used for training.

3.5 Prediction and Post-processing

During prediction, we use BSN with same procedures described in training to generate
proposals set Ψp =

{
ϕn = (ts, te, pconf , p

s
ts , p

e
te)
}Np

n=1
, whereNp is the number of pro-

posals. To get final proposals set, we need to make score fusion to get final confidence
score, then suppress redundant proposals based on these score.
Score fusion for retrieving. To achieve better retrieving performance, for each candi-
date proposal ϕ, we fuse its confidence score with its boundary probabilities by multi-
plication to get the final confidence score pf :

pf = pconf · psts · pete . (4)

After score fusion, we can get generated proposals set Ψp = {ϕn = (ts, te, pf )}Np

n=1,
where pf is used for proposals retrieving. In section 4.2, we explore the recall perfor-
mance with and without confidence score generated by proposal evaluation module.
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Redundant proposals suppression. Around a ground truth action instance, we may
generate multiple proposals with different temporal overlap. Thus we need to suppress
redundant proposals to obtain higher recall with fewer proposals.

Soft-NMS [34] is a recently proposed non-maximum suppression (NMS) algorithm
which suppresses redundant results using a score decaying function. First all proposals
are sorted by their scores. Then proposal ϕm with maximum score is used for calcu-
lating overlap IoU with other proposals, where scores of highly overlapped proposals
is decayed. This step is recursively applied to the remaining proposals to generate re-
scored proposals set. The Gaussian decaying function of Soft-NMS can be denoted as:

p′f,i =

{
pf,i, iou(ϕm, ϕi) < θ

pf,i · e−
iou(ϕm,ϕi)

2

ε , iou(ϕm, ϕi) ≥ θ
(5)

where ε is parameter of Gaussian function and θ is pre-fixed threshold. After suppres-

sion, we get the final proposals set Ψ ′p =
{
ϕn = (ts, te, p

′
f )
}Np

n=1
.

4 Experiments

In the full version of BSN paper [1], we conduct experiments on both ActivityNet-
1.3 and THUMOS-14 datasets including many ablation studys, where BSN achieves
great performance on both datasets. In this challenge report, we mainly introduce new
improvements and experiments of BSN on ActivityNet Challenge 2018. And for con-
venience, we denote BSN introduced in [1] as BSN-baseline.

4.1 Dataset and setup

Dataset. ActivityNet-1.3 [2] is a large dataset for general temporal action proposal gen-
eration and detection, which contains 19994 videos with 200 action classes annotated
and was used in the ActivityNet Challenge 2017 and 2018. ActivityNet-1.3 is divided
into training, validation and testing sets by ratio of 2:1:1.
Evaluation metrics. In temporal action proposal generation task, Average Recall (AR)
calculated with multiple IoU thresholds is usually used as evaluation metrics. Following
conventions, we use IoU thresholds set [0.5 : 0.05 : 0.95]. To evaluate the relation be-
tween recall and proposals number, we evaluate AR with Average Number of proposals
(AN) on both datasets, which is denoted as AR@AN. Area under the AR vs. AN curve
(AUC) is also used as metrics, where AN varies from 0 to 100.

In temporal action detection task, mean Average Precision (mAP) is used as evalua-
tion metric, where Average Precision (AP) is calculated on each action class respec-
tively. On ActivityNet-1.3, mAP with IoU thresholds {0.5, 0.75, 0.95} and average
mAP with IoU thresholds set [0.5 : 0.05 : 0.95] are used.
Implementation details. Here, we mainly introduce the implementation details adopted
in BSN-baseline, the improvement details will be introduced later. For visual feature en-
coding, we use the two-stream network [12] with architecture described in [35], where
BN-Inception network [36] is used as temporal network and ResNet network [37] is
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Table 1: Comparison between our method with other state-of-the-art proposal genera-
tion methods on ActivityNet-1.3 in terms of AR@AN and AUC.

Method AR@10 (val) AR@100 (val) AUC (val) AUC (test)
Uniform Random 29.02 55.71 44.88 -
Zhao et al. [25] - 63.52 53.02 -
Dai et al. [41] - - 59.58 61.56
Yao et al. [42] - - 63.12 64.18
Lin et al. [39] 52.50 73.01 64.40 64.80
BSN-baseline [1] - 74.16 66.17 66.26
+ improvement A 54.78 74.62 66.26 -
+ improvement B 55.23 75.62 67.17 67.34
+ improvement C 55.12 76.10 67.53 67.46
+ improvement D 55.66 76.45 67.88 67.99
+ improvement E 56.91 77.30 68.92 69.30

used as spatial network. Two-stream network is implemented using Caffe [38] and pre-
trained on ActivityNet-1.3 training set. During feature extraction, the interval σ of snip-
pets is set to 16 on ActivityNet-1.3.

Since the duration of videos are limited, we follow [39] to rescale the feature se-
quence of each video to new length lw = 100 by linear interpolation, and the duration of
corresponding annotations to range [0,1]. In BSN, temporal evaluation module and pro-
posal evaluation module are both implemented using Tensorflow [40]. Temporal evalu-
ation module is trained with batch size 16 and learning rate 0.001 for 10 epochs, then
0.0001 for another 10 epochs, and proposal evaluation module is trained with batch size
256 and same learning rate. For Soft-NMS, we set the threshold θ to 0.8 by empirical
validation, while ε in Gaussian function is set to 0.75 on both datasets.

4.2 Temporal Proposal Generation

The proposal performance on ActivityNet-1.3 of our method and previous state-of-the-
art methods are shown in Table 1. Our method (BSN-baseline) has significantly better
performance than previous method, and we further improve BSN in many aspects to
achieve better performance. These improvements are introduced in the following, where
each improvement is conducted based on the last improvement.

(A) Threshold in proposal generation module: In BSN-baseline, while generating pro-
posals, we choose temporal locations as candidate boundary locations where bound-
ary probability is higher than a threshold or is a probability peak. Here, we modify
the threshold from 0.9 to 0.5 · pmax, where pmax is the maximum boundary prob-
ability in the video.

(B) Video feature: In BSN-baseline, we adopt two-stream network [35] pretrained on
ActivityNet-1.3 for video feature extraction. Here, we further adopt two-stream
network [32] and pseudo-3d network [43] pretrained on Kinetics-400 dataset for
video feature extraction. To fuse these features, we train temporal evaluation mod-
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Table 2: Action detection results on validation and testing set of ActivityNet-1.3 in
terms of mAP@tIoU and average mAP, where our proposals are combined with video-
level classification results generated by [44].

validation testing
Method 0.5 0.75 0.95 Average Average
Wang et al. [44] 42.28 3.76 0.05 14.85 14.62
SCC [45] 40.00 17.90 4.70 21.70 19.30
CDC [46] 43.83 25.88 0.21 22.77 22.90
TCN [41] - - - - 23.58
SSN [47] 39.12 23.48 5.49 23.98 28.28
Lin et al. [39] 48.99 32.91 7.87 32.26 33.40
BSN-baseline [1] 52.50 33.53 8.85 33.72 34.42
BSN-improved 57.77 37.75 10.14 37.95 38.53

ule using these features separately, then average the output of temporal evaluation
module trained with different features.

(C) Ensemble with SSAD-prop [26, 39]: For better evaluating the confidence of propos-
als, we ensemble the results of BSN with the results of SSAD-prop [39]. For each
proposal ϕbsn generated by BSN, we find a proposal ϕssad generated by SSAD-
prop which has maximum IoU. Then we fuse the confidence score of ϕssad and
ϕbsn via p′bsn = pbsn · pssad, where p′bsn is new confidence score of ϕbsn.

(D) Prediction with original video duration: In BSN-baseline, for convenience, we
rescale the feature length to a fix new length lw = 100. However, there are many
short action instances, where the ratio between action duration and video duration
is even lower than 0.01. To better capture these short action instances, during pre-
diction, we use the original feature sequence instead of rescaled feature sequence.

(E) Ensemble of original and fix video duration: During analysis, we found that make
prediction using original video length can benefit the recall performance of short
action instances, however, can also damage the recall performance of long action
instances. Thus, we make a combination between fix-scale and original-scale pre-
dictions: for fix-scale predictions, we take all proposals with duration larger than 25
seconds; for original-scale predictions, we take all proposals with duration smaller
than 25 seconds. And we conduct Soft-NMS on combined proposals and output
final results.

The experiment results of these improvements are shown in Table 1, which suggest
that these improvements can bring salient performance promotion. With improved BSN,
we finally achieve 69.30 of AUC in testing set, and win the second place of temporal
action proposal generation task in ActivityNet Challenge 2018.

4.3 Action Localization with Our Proposals

To conduct temporal action localization, we put BSN proposals into “detection by clas-
sifying proposals” temporal action localization framework with state-of-the-art action
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classifier, where temporal boundaries of detection results are provided by our proposals.
We use top-1 video-level class generated by classification model [44] for all proposals
in a video and keep BSN confidence scores of proposals for retrieving. And we use 100
proposals per video during temporal action detection.

In ActivityNet Challenge 2018, comparing with BSN-baseline, we also adopt im-
provements introduced above but with two differences: (1) first, we use rescaled video
feature with lw = 64 during prediction; (2) second, we set θ in Soft-NMS to 0 here.
So why we make these adjustments? Since the localization metric (mAP) mainly de-
pends on first several proposals (as discussed in our previous notebook [39]) and the
proposal metric (AUC) depends on first 100 proposals, improvements or configurations
which benefit proposal performance may harm localization performance. Thus, as in
our previous notebook [39], we suggest that AR with small proposals amount should
has higher weight in evaluation metric of proposal generation.

Experiment results shown in Table 2 suggest that our proposed method (BSN-
baseline) has significantly better performance than previous state-of-the-art methods,
and our new improvements can bring further performance promotion. With improved
BSN, we finally achieve 38.52% of mAP in testing set, and win the first place of tem-
poral action localization task in ActivityNet Challenge 2018.

5 Conclusion

In this challenge notebook, we have introduced our recent work: the Boundary-Sensitive
Network (BSN) for temporal action proposal generation. Our method can generate pro-
posals with flexible durations and precise boundaries via directly combing locations
with high boundary probabilities, and make accurate retrieving via evaluating proposal
confidence score with proposal-level features. Thus BSN can achieve high recall and
high temporal overlap with relatively few proposals. And we also introduce the im-
provements we conducted during ActivityNet Challenge 2018, these improvements
bring further performance promotion, and can also reveal the direction of how to make
better temporal action proposal generation and localization.
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Action Pyramid Networks for Proposal and Activity Detection: Submission to
ActivityNet Challenge 2018 Task1 and Task 2

Xiao Liu, Fan Yang, Xin Li, Jun Yu, Rujiao Long, Xiang Long and Shilei Wen
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Abstract

This report details our solution to ActivityNet 2018 Task
1 (temporal action proposals) and Task 2 (temporal action
localization). For both tasks, we focus on exploring end-
to-end trained networks with two-stream features as input.
To this end, we devise a novel Action Pyramid Networks
(APN), which enjoys three favorable properties when com-
pared with conventional methods. First, 2D convolutions
are carried out on the input two stream features such that
the temporal-channel patterns are jointly modeled. Second,
a feature pyramid architecture is exploited to enlarge the re-
ceptive field of small proposals. Third, multi-scale anchor
boxes and ROI poolings are combined to generate enough
proposal candidates. The APN improves the state-of-the-
art temporal action proposal and temporal action detection
performance.

1. Approach Overview

We extract RGB and optical flow features from image
frames, and use the two stream features as the input of APN.
Soft-NMS is conducted on the output of APN to produce the
final output.

1.1. Features

We use two stream features [5], include RGB features for
spatial information and stacked optical flow fields for tem-
poral information. For both streams, we train frame-level
classifiers with 201-way outputs. Similar with [8], the clas-
sifiers are trained based on the Temporal Segment Network
[7]. The annotated action instances are regarded as posi-
tive samples of the 200 action classes, and the regions be-
tween annotated instances are regarded as the samples of the
background class. We try different ConvNet architectures
and find Inception-ResNet-v2 [6] pre-trained on Kinetics-
400 outperform others in both spatial and temporal compo-
nents. After feature training, we densely extract the output
from the last pooling layer of Incepiton-Resnet-v2 at 5-fps
for further processes. The length of each feature sequence

Figure 1. The “temporal-channel” image of a input video. The
horizontal axis shows different channels and the vertical axis is
the temporal axis. Lighter colors mean stronger activation values.
The red box indicates an action instance.

is resized to 512 by linear interpolation before putting into
the APN, such that inputs of a training video to the APN are
two 512×1536 sequences, where the two 1536-dimensional
vectors are RGB and flow features. We also try using the
densely extracted audio features [1], but find it help slightly.

1.2. Action Pyramid Networks

Temporal-Channel 2D Convolution. The input of each
stream is regarded as a 512× 1536 image with single chan-
nel, we thus can use 2D ConvNet to process the “temporal-
channel” image. Figure 1 shows an example of “temporal-
channel” image, where the horizontal axis shows different
channels and the vertical axis is the temporal axis. Lighter
colors mean stronger activation values. The red box indi-
cates an action instance. From the example, we have two
observations: 1) The action region has a strong pattern that
differs from the background region. 2) Directly concatenat-
ing all the 1536 channels as a pattern is sensitive to unex-
pected values, while concatenating a local part of the chan-
nels is more stable thanks to the invariance brought by deep
ConvNet. From these observations, the APN is built by
stacking very deep local 2D convolutions, which is differ-
ent from most previous end-to-end trained methods that use
relative shallow 1D convolutions.

1



Figure 2. The architecture of APN.

Multi-Scale Feature Pyramid. A convolution with 2D
kernel (1, 9) and stride (1, 3) is used to make the input into a
512× 512 feature map. Two (3, 3) convolutions with stride
(2, 2) are then used to generate a 128×128 feature map. We
then regard it as a standard input of 2D FPN [2] with multi-
scale feature pyramid. A 6-scale feature pyramid with side
lengths of {128, 64, 32, 16, 8, 4} is generated, and on the
top of each anchor feature map, a convolution layer is used
to squeeze the channel axis. E.g., for the finest 128 × 128
feature map, we use a convolution with 2D kernel (128, 1)
to project it into a new size of 128. Top-down lateral con-
nections are added between adjacent scales to enlarge the
receptive filed of proposals in high-resolution anchor fea-
ture maps. Figure 2 shows the architecture of proposed
APN.

Multi-Scale Anchor Boxes and ROI Pooling. For each
anchor feature map, we use a ROI pooling layer to generate
candidate proposals. We use a ROI pooling with pooling
size of 4 pixels and padding size of 2 pixels. An example
is shown in Figure 3. The ROI pooling layer generates 5
candidate positions on the 4× 1 feature map.

Similar with [3], we also use multi-scale anchor boxes.
Combining multi-scale anchor boxes and ROI poolings in-
crease the number of candidate positions and enlarge the
receptive filed of proposals.

Loss Function. We use two loss functions, the classifi-
cation loss function and the regression loss function, which
shares the same definition as most previous work.

2. Experiment Results
We add 2000 validation videos to the training set, and

leave the others for validation.
For task 1, in our reduced validation set, the “temporal-

channel” APN achieves 67.5 AR-AN score. We also train
a 1D APN with only temporal convolution, and achieves
the AR-AN score of 66.8. Merging the two models and a
TAG model [8] by Soft-NMS [4], we achieves 70.03 on the

Figure 3. A ROI pooling layer generates 5 candidate positions on
the 4× 1 feature map.

validation set, and 70.99 on the testing server.
For task 2, APN achieves 35.1 mAP in our reduced vali-

dation set, and 35.27 on the testing server.

3. Conclusions

In this work, we propose Action Pyramid Network for
temporal proposal and activity detection. We introduces
a novel “temporal-channel” convolution for this task, and
uses pyramid hierarchy, ROI pooling and multi-scale an-
chor prediction for obtaining high quality proposals. The
experiments demonstrate the effectiveness of APN. Codes
and more details will be released soon.
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Abstract

In this paper, a brief description is provided of the method used for the task of

temporal  action  proposals(task1)  &  localization(task2).  Based  on  Single-

Stream  Temporal  Action  Proposals （ SST ） and  Temporal  Relation

Network（TRN） classifier, we propose a joint optimization strategy for two

tasks, which use the classification results of the proposals generated by TRN

to optimize the proposals and then use the optimized proposals to generate

new location results. The results prove that there is an effective improvement

of the original results.

1. INTRODUCTION

Recognizing  activities  in  videos  is  a  challenging  task  as  video  is  an

information-intensive  media  with  complex  variations,  especially  when  the

duration of videos and the number of activities are varied. The ActivityNet 1.3

dataset includes about 20000 videos. The video durations vary from less than

10s to more than 300s and the number of  activities per video is about 2,

which means some of them have more than five activities and some others

have  none.  The  current  temporal  action  proposals  algorithms  choose  the

segment just based on the proposal scores of candidate proposals. This may

cause a decline in the confidence of the result. Meanwhile, the performance of

the location task 2 is heavily dependent on the task 1. Therefore, we propose

a strategy of joint optimization of task 1 and task 2. Firstly, the C3D feature of

activitynet1.3 can be generated by the C3D network. Secondly, the SST is

used  to  generate  the  original  candidate  proposals.  Thirdly,  the  top  100

candidate proposals of each video are chosen to get the classification score

using TRN. Fourthly,  the re-rank results of  original  candidate proposals are

given by combining the proposal score and the classification score. Finally, the

results  of  the  location  task  can  be  get  by  using  TRN  on  the  optimized

proposals. In addition, we also tried to optimize some hyper-parameters of the

SST and TRN.

2.Method Description

2.1 SST

The SST is  an excellent time dimension algorithm. The advantages of  SST

include:  first,  it  can  handle  long  video  sequences  with  only  one  forward

propagation to process the entire video(online), and it can handle video of any



length without dealing with overlapping time windows. Second, it achieved an

excellent result on proposal generation task. Particularly, the SST proposals

provide a strong benchmark for temporal action localization. Combining this

approach  with  existing  classification  tasks  can  improve  the  classification

performance.  The  architecture  of  the  SST  is  composed  of  the  C3D  visual

encoder  and  the  GRU  sequence  encoder.  In  the  specific  implementation,

different number of  anchors  and different sampling lengths are  compared,

where the best NMS threshold and score threshold are used.

2.2 TRN

Temporal relational reasoning is critical for activity recognition, forming the

building  blocks for  describing  the  steps of  an event.  A  single  activity  can

consist  of  several  temporal  relations  at  both  short-term  and  long-term

timescales, the ability to model such relations is very important for activity

recognition. The Temporal Relation Network (TRN) proposed by Bolei Zhou et

al [2] is designed to learn and reason about temporal dependencies between

video  frames  at  multiple  time  scales.  It  is  an  effective  and  interpretable

network  which  is  able  to  learn  intuitive  and  interpretable  visual  common

sense knowledge in videos. The networks used for extracting image features

is  very  important  for  visual  recognition  tasks,  here  we use  an  8  segment

multi-scale  TRN  with  an  inceptionV3  base  and  Inception  with  Batch

Normalization (BN-Inception) base separately. 

2.3 Ensemble

The proposals result of the SST have more than 100 candidate proposals per

video. We consider whether it is possible to use another criterion to improve

the confidence of the score of the model. Not difficult to understand that the

high  probability  activity  segment  corresponds  to  a  high  probability

classification  score  in  the  case  of  the  classification  is  reliable.  Here  the

proposals  score of  the SST and the classification score by the TRN of  the

original proposals are combined with different weights after being normalized.

In  particular,  the  classification  results  involve  different  number  of  top

proposals and average score criterion. Then we can get the re-rank proposals

results for task 1. After that, we can get the better location results based on

the optimized proposals result.

3.Experimental Results

The AcvivityNet 1.3 contains 10024 training videos (15410 instances), 4926

validation videos (7654 instances) and 5044 testing videos (labels withheld).

The  instances  are  divided  into  200  categories.  The  performance  on  the

validation dataset of AcvivityNet 1.3 are as table 1: 



Table1: AcrivityNet 1.3 validation results

4.Conclusion

The SST has been proved that it is an excellent time dimension algorithm on

proposals task. The recently proposed TRN method is effective for recognizing

daily activities with learning intuitive and interpretable visual common sense

knowledge in videos. The joint optimization strategy can better combine the

advantages  of  both  the  SST and the  TRN.  So the  proposals  task  and the

location task have achieved better results than independent, and there is still

a lot of space for optimization in this way.
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ABSTRACT

This paper presents the method for our submission to temporal action proposal (task 1) and temporal action localization (task
2) of ActivityNet Challenge 2018.

1 Our Method
1.1 Feature Extraction

In our approach, a long untrimmed video is decomposed into video units, which are reused as basic building blocks of temporal
proposals. We extract two-stream features in a similar way described in CBR 1. We adopt two-stream network which is
pre-trained on ActivityNet v1.3 training set.We segment video into unit snippets without overlap. In each snippet, we use spatial
network to extract appearance feature with 8 interval frames, and we use the output of “Flatten-673” layer in ResNet network
as feature. For motion feature, we compute optical flows using 6 consecutive frames around the center frame of a snippet, then
these optical flows are used for extracting motion feature with temporal network, where the output of “global-pool” layer in
BN-Inception network is used as feature.

1.2 Temporal Action Proposals

Temporal Boundary-aware Action Proposal (TBAP). We use out Temporal Boundary-aware action proposal as fundamental
temporal action proposal. TBAP use the framework similar to TURN-TAP2, we jointly predicts action proposals and re-fines
the temporal boundaries by temporal coordinate regression. There are two salient aspects of TBAP : (1) boundary-aware
proposal feature: We use our method similar to temporal pyramid pooling to concatenate unit features to the proposal feature;
(2)ratio clip pyramid: we made our clip pyramid in ratio according to the ground truth distributing in training dataset.

Start-End Action Proposal (SEAP). To catch the boundary of potential proposals, we develop a network called Start-End
Proposal Net, which consists of two networks. The Start net mainly for detecting the start boundary, is formed using an inner
product layer, the input of which is features extracted by TSN. The End net has the same structure as the Start net, mainly for
detecting the end boundary of actions. The outputs of both Start net and End net is the probability of boundary (start and end
respectively) and background. We set a constant value as threshold to select high quality boundaries and filter out noise. Then,
we group high quality start boundaries and end boundaries according to its position in the video to generate proposals.

Prop-SSAD. Prop-SSAD3 is a proposal generate method which simultaneously conducts temporal action proposal and
recognition,and has been used in last year challenge task3 winner method.

1.2.1 Proposal Fusion

We use normalized score to re-ranking different temporal action proposal generated from three methods . In addition, we
analyze 4 kinds of proposal distribution weight (length ratio,length,start position,end position) from training dataset and use it
in re-ranking proposals.

1.3 Temporal Action Localization

Since most videos in ActivityNet dataset only contain one action category, we use video-level action classification result of
winner in ActivityNet challenge 2016 recognition task4 as the category of temporal action proposals to get temporal action



localization result.

2 Experimental Results

Method AR-AN
Prop-SSAD 61.52
TBAP 61.84
Fusion TBAP-SEAP 63.58
Fusion TBAP-SEAP-SSAD 65.38

Table 1. Proposal Results on validation set of ActivityNet.

References
1. Gao, J., Yang, Z. & Nevatia, R. Cascaded boundary regression for temporal action detection. arXiv preprint arXiv:1705.01180

(2017).

2. Gao, J., Yang, Z., Sun, C., Chen, K. & Nevatia, R. Turn tap: Temporal unit regression network for temporal action proposals.
arXiv preprint arXiv:1703.06189 (2017).

3. Lin, T., Zhao, X. & Shou, Z. Single shot temporal action detection. In Proceedings of the 2017 ACM on Multimedia
Conference, 988–996 (ACM, 2017).

4. Xiong, Y. et al. Cuhk & ethz & siat submission to activitynet challenge 2016. arXiv preprint arXiv:1608.00797 (2016).

2/2



ActivityNet 2018: Temporal Action Proposal Challenge

Yuan Liu† Yongyi Tang\ Jingwen Wang]

‡Southeast University \Sun Yat-Sen University ]South China University of Technology

Abstract

This technical report presents an overview of our meth-
ods designed for the task of temporal action proposals in
ActivityNet Challenge 2018. A three-stage workflow is par-
ticularly devised. In order to capture long time propos-
als, we use 7 anchor layers with different time resolution
to detect proposals with various time length. We then use
Temporal Actionness Grouping(TAG) method to modify the
boundries of the proposals. Finally, a temporal convolu-
tional network is proposed to rank the generated proposals,
which can further boost the performances. Our approach
achieves 64.93 on AUC on testing set.

1. Our Approach

Our framework working in three stages is designed to
generate the temporal action proposals. In the following,
we will introduce each component, namely the single shot
action detector (SSAD) [1], temporal actionness group-
ing (TAG)[5], and proposal reranking, respectively.

1.1. SSAD

SSAD is inspired by YOLO [4] and SSD [2] network for
object detection task. By using the multi anchor mechanism
based on temporal convolutional layers, the network is able
to detect action proposals with different time length. Specif-
ically, the lower anchor layers are of smaller receptive field
and higher time resolution when compared with the higher
anchor layers. Thus, the lower anchor layers are used to de-
tect shorter action proposals with the higher layers focusing
on detecting longer action proposals. By the co-operation
of several anchor layers, proposals with various time length
will be detected. As for details, we use 7 anchors layers and
each has 512 feature maps.

1.2. TAG

The core idea of TAG is acquiring a probability score for
every snippet and then grouping them into region proposals
with multiple thresholds. We train a multi-layer perceptron
based on two hidden layers to give a score for each snippet.

TAG , as a bottom-up model that relies on actionness group-
ing, is more boundary sensitive than SSAD and can give a
boundary refinement to the proposals predicted by SSAD.

1.3. Proposal Reranking

We propose a rank model to refine the the probability
scores of each proposals. SSAD will give a probability
score which is the basis of position ranking. However, the
probability score is not accurate and we propose a rank
model to refine it. By giving a more reliable score for every
predicted proposal, the performance (ie. area under the Av-
erage Recall vs. Average Number of Proposals per Video
(AR-AN) curve with 100 proposals ) will be improved.

1.3.1 Global representation

Due to the uneven distribution of the proposal time, we use
pyramid pooling to acquire the global representation which
is inspired by [6]. Specially, for a proposal with starting
time s and ending time e, a series of snippets are included.
In this work, we use a feature extractor first proposed in
[3] to get the P3D feature pt for each proposal. We use
two stages to acquire proposal representation with different
time resolution. For the first stage, the action proposal is
divided into 5 intervals on average. For the i-th segment, it
is denoted as [s1i, e1i]. The corresponding pooled feature is
denoted as

ui1 =
1

e1i − s1i

e1i∑

t=s1i

pt (1)

By concatenating the pooled features across the 5 inter-
vals of this stage, the representation is acquired, represented
as

f1 = [u11, u
2
1, u

3
1, u

4
1, u

5
1] (2)

As for the second stage, the action proposal is divided
into 2 intervals on average and the corresponding feature
representation will have larger receptive field, denoted as

f2 = [u12, u
2
2] (3)

The global representation will be the concatenation of
the two stages and is represented as f = [f1, f2]

1



1.3.2 classifier

The rank model use two types of classifiers, an activity clas-
sifier and a completeness classifier to rerank the sequence of
proposals. The activity classifier is to give a discrimination
between background proposals and the others. The com-
pleteness classifier is to predict whether the proposals are
complete. As for the completeness filter, context informa-
tion is included in the input representation which is crucial
for the discrimination of completeness.

For both of the two classifiers, they need to output higher
scores for positive instances and lower scores for negative
instances. During training, suppose that we have a set of
pairs Ki = (pi, ni). Take the completeness classifier for
example, pi means a complete instance and ni means a in-
complete instance. Our goal is to train the two classifiers
which assign higher scores for positive instances, which can
be expressed as

f(pi) � f(ni), ∀(pi, ni)∈K (4)

The ranking loss function is defined as:

min :
∑

(pi,ni)

max(0, 1− f(hi) + f(ni)) (5)

2. Experiments results

2.1. Evaluation Metrics

As for the task of temporal action proposal, the area un-
der the Average Recall (AR) vs. Average Number of Pro-
posals (AN) per Video curve (AUC) is adopted as the eval-
uation metric, where AR is defined as the mean of all recall
values using tIoU between 0.5 and 0.9 with a step size of
0.05. AN is defined as the total number of proposals di-
vided by the number of videos in the testing subset.

2.2. Temporal Action proposal

The performance of TAG and SSAD on the validation set
of Activitynet is shown in Table 1 and Table 2. The perfor-
mances with different features, including inception resnet,
inceptionV4, I3d and P3d, vary significantly. It can also
observed that with additionally incorporating the reranking
model, the performances of both TAG and SSAD can be
consistently improved.

TAG, regarded as a bottom-up model, is more sensitive
to temporal boundaeries than SSAD. For each proposals ti
in TAG, we calculate its Iou with all proposals in SSAD.
If the maximum Iou is higher than a threshold φ, we re-
place the corresponding proposals ps in SSAD. As for the
selection of threshold φ, we find 0.6 is most suitable for this
problem which is shown in Table 3, the best performance is
66.01 by combining TAG and SSAD.

Table 1. The AUC of SSAD with multiple features on ActivityNet
validation set for temporal proposals task.

Network Features Re ranking AUC
TAG Inception resnet 56.37
TAG InceptionV4 56.9
TAG I3d 58.243
TAG P3d 57.16
TAG Inception resnet

√
56.92

TAG InceptionV4
√

57.8
TAG I3d

√
59.51

TAG P3d
√

59.91
Fusion all 60.61

Table 2. The AUC of TAG with multiple features on ActivityNet
validation set for temporal proposals task.

Network Features Re ranking AUC
TAG Inception resnet 51.335
TAG InceptionV4 50.8
TAG I3d 53.298
TAG P3d 56.21
TAG Inception resnet

√
53.635

TAG InceptionV4
√

54.1
TAG I3d

√
56.632

TAG P3d
√

59.01
Fusion all 62.07

Table 3. The AUC of boundary refinement based on TAG and
SSAD on ActivityNet validation set for temporal proposals task.
The threshold φ varies from 0.5 to 0.9.

Network φ AUC
TAG+SSAD 0.5 65.71
TAG+SSAD 0.6 66.01
TAG+SSAD 0.7 65.62
TAG+SSAD 0.8 65.10
TAG+SSAD 0.9 64.32

3. Conclusion
In ActivityNet Challenge 2018, we mainly focus on

boundary refinement and reranking model to improve the
performance of AUC based on multiple visual features. In
the future work, we will further study how to make the net-
work more sensitive to boundariesaOur approach achieves
64.93 on temporal action proposal task on the testing set.
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Abstract

This note describes the details of our solution to the
dense-captioning events in videos task of ActivityNet Chal-
lenge 2018. Specifically, we solve this problem with a two-
stage way, i.e., first temporal event proposal and then sen-
tence generation. For temporal event proposal, we direct-
ly leverage the three-stage workflow in [13, 16]. For sen-
tence generation, we capitalize on LSTM-based captioning
framework with temporal attention mechanism (dubbed as
LSTM-T). Moreover, the input visual sequence to the LSTM-
based video captioning model is comprised of RGB and
optical flow images. At inference, we adopt a late fusion
scheme to fuse the two LSTM-based captioning models for
sentence generation.

1. Sentence Generation Model

Inspired from the recent successes of LSTM based se-
quence models leveraged in image/video captioning [1, 3, 5,
6, 7, 10, 11, 12, 14, 15], we formulate our sentence genera-
tion model in an end-to-end fashion based on LSTM which
encodes the input frame/optical flow sequence into a fixed
dimensional vector via temporal attention mechanism and
then decodes it to each target output word. An overview of
our sentence generation model is illustrated in Figure 1.

In particular, given the input video with frame and opti-
cal flow sequences, each input frame/optical flow sequence
({v(1)

i }Ki=1) is fed into a two-layer LSTM with attention
mechanism. At each time step t, the attention LSTM de-
coder firstly collects the maximum contextual information
by concatenating the input wordwt with the previous output
of the second-layer LSTM unit h2

t−1 and the mean-pooled

video-level representation v = 1
K

K∑
i=1

v
(1)
i , which will be set

as the input of the first-layer LSTM unit. Hence the updat-
ing procedure for the first-layer LSTM unit is as

h1
t = f1

([
h2
t−1,Wswt,v

])
, (1)

Input sentence

“a group of men are playing soccer”

LSTM

Temporal Attention 

Mechanism

Mean Pooling

Wt

LSTM

Wt+1

P3D

Frame Stream

Optical Flow Stream

P3D

Figure 1. The sentence generation model in our system for dense-
captioning events in videos task.

where Ws ∈ RD1
s×Ds is the transformation matric for input

word wt, h1
t ∈ RDh is the output of the first-layer LSTM

unit, and f1 is the updating function within the first-layer
LSTM unit. Next, depending on the output h1

t of the first-
layer LSTM unit, a normalized attention distribution over
all the frame/optical flow features is generated as:

at,i = Wa

[
tanh

(
Wfv

(1)
i +Whh

1
t

)]
,

λt = softmax (at) ,
(2)

where at,i is the i-th element of at, Wa ∈ R1×Da , Wf ∈
RDa×Dv and Wh ∈ RDa×Dh are transformation matri-
ces. λt ∈ RK denotes the normalized attention distribu-
tion and its i-th element λt,i is the attention probability of
v
(1)
i . Based on the attention distribution, we calculate the

attended video-level representation v̂t =
K∑
i=1

λt,iv
(1)
i by ag-

gregating all the frame/optical flow features weighted with
attention. We further concatenate the attended video-level
feature v̂t with h1

t and feed them into the second-layer L-
STM unit, whose updating procedure is thus given as:

h2
t = f2

([
v̂t,h

1
t

])
, (3)

where f2 is the updating function within the second-layer L-
STM unit. The output of the second-layer LSTM unit h2

t is

1



Table 1. Performance on ActivityNet captions validation set, where B@N , M, R and C are short for BLEU@N , METEOR, ROUGE-L
and CIDEr-D scores. All values are reported as percentage (%).

Model B@1 B@2 B@3 B@4 M R C
LSTM-Tframe 12.71 7.24 4.01 1.99 8.99 14.67 13.82
LSTM-Topt 12.46 7.08 3.96 1.97 8.72 14.55 13.60
LSTM-T 13.19 7.75 4.48 2.31 9.26 15.18 14.97

leveraged to predict the next word wt+1 through a softmax
layer. Note that the policy gradient optimization method
with reinforcement learning [4, 9] is additionally leveraged
to boost the sentence generation performances specific to
METEOR metric.

2. Experiments
2.1. Features and Parameter Settings

Each word in the sentence is represented as “one-hot”
vector (binary index vector in a vocabulary). For the in-
put video representations, we take the output of 2048-way
pool5 layer from P3D ResNet [8] pre-trained on Kinetics
dataset [2] as frame/optical flow representation. The dimen-
sion of the hidden layer in each LSTM Dh is set as 1,000.
The dimension of the hidden layer for measuring attention
distribution Da is set as 512.

2.2. Results

Two slightly different settings of our LSTM-T are named
as LSTM-Tframe and LSTM-Topt which are trained with
only frame and optical flow sequence, respectively. Table 1
shows the performances of our models on ActivityNet cap-
tions validation set. The results clearly indicate that by uti-
lizing both frame and optical flow sequences in a late fusion
manner, our LSTM-T boosts up the performances.

3. Conclusions
In this challenge, we mainly focus on the dense-

captioning events in videos task and present a system by
leveraging the three-stage workflow for temporal event pro-
posal and LSTM-based captioning model with temporal at-
tention mechanism for sentence generation. One possible
future research direction would be how to end-to-end for-
mulate the whole dense-captioning events in videos system.
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Abstract

In this paper, we describe the details of our approaches
on the challenge of dense-captioning events in videos.
Based on TA model [6], we employ a temporal encoder [7]
and a reconstructor [3], and trained models by the REIN-
FORCE algorithm [5]. As such the global and local seman-
tic information, temporal relationships and backward flow
information in video clips are fully captured. The evalua-
tion metric, specifically the METEOR, is optimized directly,
which contributes greatly to the performance improvements.
Afterwards, we build a ensemble model trained with dif-
ferent features and re-rank [4] the final results with a fu-
sion score computed by confidence score of predicted cap-
tion and its corresponding proposal score. Our approach
achieves 8.1057 on METEOR on testing set.

1. Approaches

In this section we first describe our base model TA for
video captioning briefly. Afterwards, the incorporated com-
ponents are introduced in the following.

1.1. Model

Temporal Attention (TA) Captioning Model. The TA
model [6] learns local temporal structure of videos from
C3D features and yields the global structure by employing
the soft-attention strategy which learns to select the most
relevant temporal segments. Given the previous state ht−a

of RNN and video frame features V = {v1, v2, ..., vn}, the
weight for each frame feature is learned as follow:

eti = wT tanh (Wht−1 + Uvi + b)

αt
i = exp{eti}/

n∑

j=1

exp{eti}
(1)

where the eti and the αt
i are relevance score and normalized

weight for the ith frame feature on tth step, respectively. At
last, the video feature is obtained by attentively weighting

each frame feature:

ϕt(V) =
n∑

i=1

αt
ivi (2)

where ϕt(V ) represents the obtained global video feature at
tth step. The decoder, realized by LSTM, relies on ϕt(V )
as well as previous hidden states and predicted word to gen-
erate the word at each time step.

Temporal Encoding. However, we find that soft-
attention mechanism in TA only decides which frames are
more important than the others in current time but does not
care whether the order of input frame sequence is correct or
not. Inspired by [7], we proposed to attentively encode the
video frames. Specifically, we employ the LSTM as a tem-
poral encoder working on the yielded video frame represen-
tation. The video frames are fed into LSTM, with the hid-
den state of each step are taken as the high-level semantic
features. The soft-attention strategy performs on the high-
level semantic features to generate the video global struc-
ture.

Reconstruction. In addition to the above information,
we can also mine other information of the training data,
such as forward and backward flow information between
video and ground-truth description. Following [3], we build
a reconstructor on top of the decoder. It takes the hidden
state sequence of the decoder as input and reproduces the vi-
sual features of the video. Mean pooling is operating on the
state sequence of the reconstructor to reconstruct the global
semantic structure of the original video. The reconstruc-
tion loss is measured by the Euclidean distance between the
original and reproduced video feature and participates in the
training of the model as follows:

L =

N∑

i=1

(
− logP

(
Si|Vi

)
︸ ︷︷ ︸

encoder-decoder

+λLrec(V
i,Zi)︸ ︷︷ ︸

reconstructor

)
. (3)

where S = {s1, s2, ...sm} is sentence description, Z =
{z1, z2, ...zm} is hidden state sequence of reconstructor,
and λ is a trade-off parameter for controlling the influence
of reconstuctor.
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REINFORCE Algorithm. Inspired by [2], we em-
ployed the REINFORCE algorithm with a baseline [5] and
set the reward obtained by the current model under the in-
ference algorithm used at validation time as the baseline,
which called self critical. We use the REINFORCE to di-
rectly optimize the non-differentiable metrics, rather than
the cross entropy loss. Moreover, the REINFORCE algo-
rithm can help address the exposure bias [1] problem.

2. Experimental Results
2.1. Features

Besides the C3D features provided by the challenge or-
ganizers, we extract i3d features fine-tuned on Kinetics and
ActivityNet, p3d features, inception-V4 features, resnet-
152 features, and inception resnet v2 features for static im-
ages of ActivityNet dataset. These features can be used in-
dividually or fused together. Two fusion strategies are de-
signed.

• Simple Concatenation. We simply concatenate the
features together.

• Dimensionality Reduction Concatenation. We first
reduce the dimension by full-connection layers and
then concatenate them together.

2.2. Training

We set the hidden size of all LSTMs as 512, except for
the reconstructor as same dimension as that of original fea-
tures. We set the maximum sentence length for predicted
sentence is 82, which is same as that in the training dataset.

We employ early stop on METEOR score during training
all models. The entire training process is as follows:

• Firstly, we rely on the forward likelihood to train the
encoder-decoder component by optimizing cross en-
tropy loss, and got the model with best METEOR on
the validation dataset.

• Secondly, the reconstructor and the backward recon-
struction loss Lrec are introduced. We use the whole
loss defined in Eq. (3) to jointly train the reconstructor
and fine-tune the encoder-decoder. Model with best
METEOR score can be received.

• Afterwards, use the REINFORCE algorithm to train
the model from second step by directly optimizing the
METEOR score.

2.3. Performance Evaluation

We first show the performance of original TA, TA with
temporal encoder (TA enc), TA with reconstructor (TA rec)
and TA with REINFORCE (TA sc) on validation with
ground-truth proposals in Table 1. It can be observed that

Table 1. Performance evaluation of models on the validation
dataset with c3d feature in terms of METEOR scores (%).

Model METEOR(with gt proposals)
TA 8.5197

TA enc 8.7944
TA rec 8.9328
TA sc 13.0286

TA enc outperforms TA, indicating that temporal encoding
is useful to improve the captioning performance. TA rec is
trained based on TA enc. With the backward flow informa-
tion captured by reconstructor, the captioning performance
can be further improved. Moreover, the performance can be
significantly improved with the REINFORCE algorithm.

Table 2. Performance evaluation of models trained by REIN-
FORCE on the validation dataset in terms of METEOR scores (%).
Different features and fusion strategies are used. The ’i3ds’ repre-
sents i3drgb and i3dflow, the ’(unt)’ means feature extracted from
models trained with Imagenet and fine-tuned on Kinetics and ’(t)’
means features extracted from models fine-tuned on ActivityNed
data.

num Feature Type METEOR(gt) METEOR(ours)
1 c3d 13.0286 8.6508
2 p3d 12.8433 8.5878
3 i3d rgb (unt) 13.4688 9.1515
4 i3d flow (unt) 13.2782 8.9731
5 i3d rgb (t) 13.2756 9.0224
6 i3d flow (t) 13.2371 8.9721
7 inceptionV4 13.1697 8.8144
8 resnet152 13.0792 8.5952
9 inception resnet v2 12.9856 8.8193
10 i3ds(unt) 13.4765 9.0347
11 i3ds(unt) + c3d 12.9822 8.8571
12 i3ds (unt) + p3d 12.5905 8.4968
13 i3ds(t) 12.7720 8.966
14 i3ds (t) + i3ds (unt) 13.1894 8.9543
15 i3ds (t) + i3ds (unt)+ p3d 12.6332 8.5739
16 i3drgb (t) + i3drgb (unt) 12.9484 8.7323
17 i3dflow (t) + i3dflow (unt) 12.9702 8.7316
18 i3ds (unt) 13.0941 8.7802
19 i3ds (t) 12.7720 8.8857
20 i3ds (t) + i3ds (unt) 13.1895 8.6158
21 i3ds (t) + i3ds (unt) + p3d 12.6332 8.6305

Table 2 shows METEOR of models trained with differ-
ent features and REINFORCE algorithm. Models 1 to 9 are
trained with single features. And models 8 to 17 are trained
with features by the simple concatenation strategy. Models
18 to 21 are trained with features by the dimensionality re-
duction concatenation strategy. The results are performed
with the ground-truth proposal (gt) as well as the proposals
we get from the Temporal Action Proposals task of Activi-
tyNet2018 Challenge. We find that performances of models
trained by fused features are slightly better than those of
models trained with single features.

Finally, we fuse the models the METEOR scores of
which on validation dataset with our proposal larger than
8.8% together. Table 3 shows that ensemble model presents
a significant better performance. After generating the sen-
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Table 3. Performance evaluation of model ensemble on the valida-
tion dataset in terms of METEOR scores (%).

model Type METEOR(our proposals)
model ensemble 9.3005

model ensemble(reranking) 9.4002

tence, we compute a ranking score [4] for the proposal-
sentence pair as follows:

r = λsent ∗ coni + λprop ∗ p(proposali) (4)

For the ith proposal, its proposal confidence score
p(proposali) and the confidence score coni of its associ-
ated sentence is generated. We obtain the ranking score r by
summing coni and p(proposali) with the trade-off param-
eters λsent and λprop, and re-rank the results. The ranking
process can help to remove the results with good sentence
but bad proposal or good proposal but bad sentence.

2.4. Submission Results

We submit the captions predicted by the
model ensemble(reranking) with temporal proposals.
The METEOR score on the test server is 8.1057.

3. Conclusion
In this report, we employ a temporal encoder and a re-

constructor equipped with the TA model for video caption-
ing. The REINFORCE algorithm is utilized to train our
video captioning model with the optimization on the ME-
TEOR score. During the inference, the ensemble and joint
ranking techniques are used. The METEOR score achieves
8.1057 on the test server for the dense-captioning events in
videos challenge.
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Abstract

This notebook paper presents our system in the Activi-
tyNet Dense Captioning in Video task (task 3). Temporal
proposal generation and caption generation are both im-
portant to the dense captioning task. Therefore, we propose
a proposal ranking model to employ a set of effective fea-
ture representations for proposal generation, and ensemble
a series of caption models enhanced with context informa-
tion to generate captions robustly on predicted proposals.
Our approach achieves the state-of-the-art performance on
the dense video captioning task with 8.529 METEOR score
on the challenge testing set.

1. Task Introduction
Most natural videos contain multiple events. Instead of

generating a single sentence to describe the overall video
content, the dense video captioning task aims to localize
the event and generate a series of sentence to describe each
event. This task is more challenging than the single sen-
tence video captioning task, which requires to generate
good temporal event proposals, consider the correlations of
different events in the video and so on.

2. Proposed Approach
The framework of our approach is presented in Figure 1,

which consists of four components: 1) segment feature ex-
traction; 2) proposal generation; 2) caption generation; and
4) re-ranking. In this section, we introduce each component
of the framework in details.

2.1. Segment Feature Extraction

We divide the video clip into non-overlapping segments
and extract features for each segment. The length of the seg-
ment is set to be 64 frames in our work. Since the video con-
tains multi-modal information, we first extract three types of
deep features from different modalities, which are: 1) image
modality: Resnet features [3] pretrained on the ImageNet

∗Corresponding author.

dataset; 2) motion modality: I3D features [1] pretrained on
the Kinetics dataset; and 3) audio modality: VGGish fea-
tures [4] pretrained on the Youtube8M dataset.

As shown in previous works [6], the context information
plays an important role in generating proper captions for an
event proposal. Therefore, we utilize a bidirectional LSTM
to capture the context information and extract the hidden
states of LSTM as our context feature. The LSTM employs
the aforementioned three types of deep features as input,
and is trained to predict concepts in groundtruth captions in
each step. In such a way, the LSTM learns the bidirectional
context for each segment to generate captions.

After the feature extraction, the video is represented as a
sequence of segment-level features.

2.2. Proposal Generation

We adopt a two-stage pipeline to generate temporal pro-
posals. Firstly, a heuristic sliding window method is ex-
ploited to generate a series of candidate proposals for each
video. Then, we train a proposal ranking model to select
proposals that are of high tiou (temporal intersection over
union) with groundtruth proposals.

Candidate Proposal Generation
In order to generate candidate proposals with high re-

calls, we apply the sliding window approach on the video
clip. Assuming w is the length of the window, we slide the
window over the clip with the shift of w/4. The window
lengths are generated according to lthe length distribution
of groudtruth proposals and the length of the video. We first
cluster proportions of the groundtruth proposal in the video
into K centers {wp

1 , · · · , wp
K}. Then we set the window

lengths for each video to be wk = wp
k · l for k = 1, · · · ,K,

where l is the length of the video.
Proposal Ranking Model
The proposal ranking model is trained to filter out inap-

propriate candidate proposals. We consider a good temporal
proposal to satisfy the following conditions: 1) the event in
the proposal is meaningful; 2) the event in the proposal is
different from its context; 3) the boundaries of the proposal
contain variance; and 4) the location of the proposal is satis-
fied with groundtruth distributions. Therefore, we propose
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Figure 1. Framework of our proposal approach, which consists of four components: 1) segment feature extraction to transfer the video
into a sequence of multimodal features; 2) proposal generation which contains a proposal ranking model to select good event proposals;
3) caption generation which employs various caption models to generate accurate event descriptions; and 4) re-ranking to select event
captions with both high proposal and caption score.

four different features to satisfy the conditions above: 1)
internal feature: mean pooling of segment features in the
proposal to represent events in the proposal; 2) external fea-
ture: mean pooling of segment features in the context to
represent contextual events; 3) boundary feature: the differ-
ence of the segment feature near the proposal boundary to
represent the boundary variance; and 4) the proportion of
the location and duration of the proposal. We utilize a two-
layers feed-forward neural network to fuse these features
and predict the proposal score sp of the proposal. During
training, candidate proposals with tiou above 0.7 are as pos-
itive samples and tiou less than 0.5 are as negative samples.

2.3. Caption Generation

In order to generate accurate and diverse video captions,
we employ three different caption models and ensemble
them to generate the caption for each event proposal.

Vanilla Caption Model [5] is the baseline model for the
video captioning task. It consists of a multimodal video

encoder and a LSTM language decoder. Since the context
is vital to generate consistent captions for the proposal, we
enhance the encoder with the LSTM context features [8].

Temporal Attention Caption Model [9] improves over
the vanilla caption model via paying attention to relevant
segments in the video to generate each word. To incorporate
the context, we also enhance the encoder in the attention
model with the contexts of the boundaries.

Topic Guided Caption Model [2] utilizes the video top-
ics to guide the caption model to generate topic-aware cap-
tions. Since there are 200 manual labeled categories in the
ActivityNet dataset, we directly use these categories as our
topics. We train a topic predictor which is a single-layer
feed-forward neural network to predict the category prob-
abilities of each proposal. As the size of the dataset is not
large, we adopt the Topic Concatenation in Decoder version
in [2] to guide the caption generation which requires fewer
parameters than TGM in [2].

We firstly use the cross entropy loss to pretrain all
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the caption models, which optimizes the likelihood of the
groundtruth captions. But such training approach suffers
from the exposure bias and evaluation mismatch problems.
Therefore, we employ the self-critical reinforcement learn-
ing [7] to further train our caption models, which is the
state-of-the-art approach in image captioning and allevi-
ates the above two problems. CIDEr and METEOR are
weighted as our reinforcement reward.

Caption Model Ensemble aims to make use of various
caption models. We ensemble the word prediction of each
model at every step. Beam search with beam size of 5 is
used to generate the final caption with probability score sc.

2.4. Re-ranking

Since both the proposal quality and the caption quality
influence the evaluation of dense captions, we re-rank the
captions of different proposals by s = sp · sc. The top 10
captions with their proposal are selected.

3. Experimental Results

3.1. Experimental Settings

Dataset: The ActivityNet Dense Caption dataset [6] is
used in our work. We follow the official split with 10,009
videos for training, 4,917 videos for validation and the re-
maining 5,044 videos for testing. The groundtruth of the
testing videos are unknown. For the final submission, we
enlarge our training set with part of validation set to future
improve the performance, which contains 14,009 videos for
training and 917 videos for validation.

Evaluation Metrics: We employ the precision and re-
calls to evaluate the performance of proposals. To evaluate
the captions, we first evaluate the performance of the cap-
tion using the groundtruth proposal. And then we use the
same metric as [6] to evaluate the captions of predicted pro-
posals, which computes the caption performance for pro-
posals with tiou 0.3, 0.5 and 0.7 with the groundtruth.

3.2. Evaluation of Proposals

Table 1 presents the performance of our proposal gen-
eration approach. For the sliding window candidate pro-
posal generation, we use 20 clusters to generate sliding win-
dow, which leads to 241 proposals for each video. We can
see that the heuristic sliding window approach achieves re-
markable recall (0.98 on average), while the precision of
the proposal is quite low. After applying the proposal rank-
ing model, we select proposals that contain proposal score
sp > 0.5 which results in 53 proposals on average for
each video. The precision is significantly improved (0.71
vs 0.28) with minor recall decrease, which demonstrates the
effectiveness of our proposal ranking model.

Table 1. Performance of the proposal generation approach. P and
R are short for precision and recall.

#props metric 0.3 0.5 0.7 avg
sliding
window 241 P 0.45 0.27 0.12 0.28

R 0.99 0.99 0.95 0.98
proposal
ranking 53 P 0.97 0.77 0.38 0.71

R 0.91 0.85 0.76 0.84

Table 2. Performance of difference caption models.
proposal model Bleu4 Meteor CIDEr

groundtruth

vanilla 3.62 13.37 52.36
attention 3.69 13.21 53.45

topic guided 3.46 13.71 51.53
ensemble 3.97 13.75 56.45

predicted ensemble 4.00 12.44 31.10

Table 3. Performance of the submitted models.
Bleu4 Meteor CIDEr

val small 3.92 12.67 31.92
testing - 8.529 -

3.3. Evaluation of Captions

Table 2 shows the caption performance using
groundtruth proposals. We can see that the perfor-
mance of different models are competitive with each
other, and the ensemble of these models achieves the best
performance consistently on different caption metrics.
For the predicted proposals, the performance is dropped
a little due to the imperfect proposal, which shows the
robustness of our caption model on imperfect proposals.
The significant decrease of CIDEr score mainly results
from the more proposals in the predicted version than the
groundtruth, which makes the tf-idf statistics different.

3.4. Submission

For the final submission, we train our caption models on
the bigger training set and utilize the smaller validation set
to select models. The performance of the submitted model
is presented in Table 3. More training data brings small im-
provement, and our model achieves 8.529 METEOR score
on the testing set.

4. Conclusion

In this work, we propose a system with four components
to generate dense captions in videos, which achieves signifi-
cant improvements on the dense video captioning task. Our
results show that it is important to utilize context-related
features for both the proposal generation and caption gen-
eration. In the future, we will explore to unify the system
in an end-to-end way to improve the proposal module with
captions and generate more diverse caption for the events.
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Abstract

In the report, we introduce our video caption approach
for the ActivityNet Challenge in conjunction with CVPR
2018. Based on the 3D-ResNet with 34-layer [1, 2] and
LSTM-based Sentence Generator [5], our captioner gen-
erates a suitable sentence along an input video. The cap-
tioning model is trained with the training-set on ActivityNet
database. In the experimental section, we show our rate on
the test-set with evaluation server. Finally, we achieved to
put our name on the leaderboard!1

1. Introduction

The task of finding a de facto standard for video recog-
nition has advanced with both hand-crafted and deeply
learned feature representations. In the recent DNN-based
video recognition, we are focusing on 3D convolutional net-
works such as C3D [4] and 3D-ResNets [1, 2].

On one hand, video caption which includes time dura-
tion seems to be very difficult issue in the current vision-
based algorithm. The open problem is composed by two
problem, namely (i) video representation in order to gener-
ate an appropriate sentence, and (ii) temporal segmentation
to fix an event duration. We believe that the video repre-
sentation problem is more important. Therefore we apply
a sophisticated video representation 3D-ResNet with layer-
34 for video caption. To generate a video caption, we apply
a standard sentence generator LSTM based on the Google’s
Show and Tell algorithm [5].

∗denotes equal contribution
1Two bachelor students have tried very challenging task, namely “can

CV-research beginners achieve the ActivityNet Challenge in two months?”
Although our rate is far from competitive performance, we succeeded to
list our team on the leaderboard.

Figure 1. The successful (top) and failure (bottom) cases in Activ-
ityNet Challenge with video caption.

2. Proposed approach: 3D-ResNet-34 + LSTM

We simply combine 3D-ResNet-34 with LSTM. To
train/test the LSTM, the layer after global average pool-
ing (2,048-d vector) is inserted from 3D-ResNet. The 3D-
ResNet-34 is pretrained by Kinetics dataset [6] and the
3D-ResNet-34+LSTM is trained by ActivityNet caption [3]
with end-to-end training manner.

3. Result on video caption task

Our performance value with METEOR is 0.6266. The
score is far from top-ranked captioners from other teams.
The result is coming from fewer proposals per a video. Our
temporal proposals with start- and end-time are only 2 per
a video. In the future, we would like to evaluate the video
captioner with e.g. over 100 proposals in video. Moreover,
we must implement an improved temporal proposals and
more sophisticated models such as 3D-ResNet-{50, 101,
152}, 3D-ResNeXt-101.
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1. Introduction
We present the design of attention blocks for action

recognition on convolutional networks and propose a cas-
cade convolutional attention network for action recognition.

The center loss is adopted for learning a center for deep
features of each class and penalizing the distances between
the deep features and their corresponding class centers.

We implement a multi-stream framework to utilize the
rich multi-modal information in videos for human action
recognition. Specifically, we train four convolutional neu-
ral networks whose inputs are RGB images, stacked opti-
cal flow, human pose information and audio respectively in
each video.

2. Proposed Approach
2.1. Multimodal Feature Extraction

A video can be decomposed into visual and acoustic
components. The visual component can be further divided
into spatial and temporal parts. The optical flow are ex-
tracted with TVL1 optical flow algorithm[4]. The human
pose information is calculated by Openpose [1].

The audio is divided into 2s frames. The MFCC features
are extracted. The resulting frame can be seen as a 348X12
image that form the input of a Inception-ResNet-v2 image
classification model.

2.2. Attention Block

In fields of action recognition, discriminative spatial
temporal features are key factors to define the action in a
video. Thus, we aim to design attention blocks that can cap-
ture salient data both spatially in each frame and temporally
across frames.

In implementation, the proposed attention block can be
formulated as follows. Let S ∈ RC×H×W denote the input
feature maps, where C is the number of feature channels,
and H and W represent the filter map size. The feature vec-
tor si,j ∈ RC consists of the element at spatial location
(i, j) of each feature map input.

As shown in Figure 1, the convolutional layers in the

Figure 1: The architecture of attention block.

attention block produce a feature map, with each element
s

′
i,j at location (i, j) calculated as in Equation (1).

s
′
i,j = convs(si,j ;Wc), (1)

where convs(.) represents a series of convolutional opera-
tions that calculates the convoluted feature maps on the in-
put andWc represents the weight parameters to be learned.

The attention weight map α is defined as α = {αi,j},
where αi,j is then produced with Equation (2).

αi,j = softmax(s
′
i,j), (2)

The re-weighted feature map sα = {sαi,j} is computed
by element-wise product of the attention map and the input
feature maps S. The final output feature mapSα is produced
by adding a shortcut connection from the input feature map
S, as shown in Equation (3) and (4),

sαi,j = αi,j � si,j (3)
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Sα = tile(sα) + S (4)

where � and+ respectively denote element-wise product
and add operations.The tile operation duplicates the atten-
tion map to produce C feature maps.

The re-weighted feature maps will be fed into subse-
quent classification layer. During training, the final action
classification loss is back propagated to the attention block
to guide the learning of block weightsWc so that the atten-
tion map α can pick up salient regions.

Figure 2: The architecture of our proposed cascade attention net-
work on a four-stream ConvNet.

2.3. Cascade Attention Networks

Our four-stream model is constructed by four individ-
ual spatial, temporal, pose and audio stream. Each stream
models different type of information in videos respectively
and independently. Cascade attention blocks on a four
stream ConvNet where attention blocks are embedded be-
tween convolutional layers progressively from low layers to
high layers. Figure 2 illustrates the Cascade Convolutional
Attention Networks.

Besides, the joint supervision of softmax loss and center
loss [3] to train the CNNs for discriminative feature learn-
ing. formulation is given in Equation (5), (6), (7).

l = ls + αlc (5)

ls = −
m∑

i=1

log
eW

T
yixi+byi

∑n
j=1 e

WT
j xi+bj

(6)

lc =
1

2

m∑

i=1

‖xi − cyj‖22 (7)

where xi denotes the i th deep feature,belonging to the yith
class, The cyi denotes the yith class center of deep features.

Last, Grid Search algorithm is employed to search the
optimal weights of RGB, optical flow, pose and audio net-
works. Last result is calculated by four weighted results.

3. Experiment Results
Except for using multiple feature models, we tried differ-

ent ConvNet architectures such as Inception-BN, Inception-
v3, Inception-ResNet-V2, ResNext-50 and SE-ResNext to
train the RGB, optical flow, skeleton and audio separately,
and then we ensembled all models to get the final result.
All the RGB models and audio models are initialized with
weights pretrained on ImageNet. In order to utilize the Ima-
geNet RGB models to initialize the motion and pose model,
we use cross-modality pretraining method [2] that averages
the weights across RGB channels and replicates this aver-
age by the channel number of the target network.Table 1
summarizes our results on the Kinetics validation dataset.

Model Top-1 Accuracy(%) Top-5 Accuracy(%)
RGB 77.5% 90.5%
Flow 54.4% 75.6%
Audio 21.3% 38.7%
pose 45.6% 58.6%

Ensemble 80.5% 92.3%

Table 1: Kinetics validation results.
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Abstract

In this paper, we introduce our submissions for the tasks
of trimmed activity recognition (Kinetics)[8] and trimmed
event recognition (Moments in Time)[9] for Activitynet
Challenge 2018. In the two tasks, non-local neural net-
works and temporal segment networks are implemented as
our base models. Multi-modal cues such as RGB image,
optical flow and acoustic signal have also been used in our
method. We also propose new non-local-based models for
further improvement on the recognition accuracy. The fi-
nal submissions after ensembling the models achieve 83.5%
top-1 accuracy and 96.8% top-5 accuracy on the Kinetics
validation sets, 35.81% top-1 accuracy and 62.59% top-5
accuracy on the MIT validation sets.

1. Introduction
Activity Recognition in videos has drawn increasing at-

tention from the research community in recent years. The
state-of-the-art benchmark datasets such as ActivityNet, Ki-
netics, Moments in Times have contributed to the progress
in video understanding.

In Activitynet Challenge 2018, we mainly focused on
two trimmed video recognition tasks based on Kinetics
and Moments in Times datasets respectively. The Kinetic
dataset consists of approximately 500,000 video clips, and
covers 600 human action classes. Each clip lasts around
10 seconds and is labeled with a single class. Similarly,
the Moments in Times dataset is also a trimmed dataset, in-
cluding a collection of 339 classes of one million labeled 3
second videos. The videos not only involve people, but also
describe animals, objects or natural phenomena, which are
more complex and ambiguous than the videos in Kinetics.

To recognize actions and events in videos, recent ap-
proaches based on deep convolution neural networks have
achieved state-of-the-art results. To address the challenge,
our solution follows the strategy of non-local neural net-
work and temporal segment network. Particularly, we learn

models with multi-modality information of the videos, in-
cluding RGB, optical flow and audio. We find that these
models are complementary with each other. Our final result
is an ensemble of these models, and achieves 83.5% top-1
accuracy and 96.8% top-5 accuracy on the Kinetics valida-
tion set, 35.81% top-1 accuracy and 62.59% top-5 accuracy
on the MIT validation sets.

2. Our Methods
2.1. Temporal Segment Networks

One of our base model is temporal segment network
(TSN)[11]. TSN models long-term temporal information
by evenly sampling fixed number of clips from the entire
videos. Each sampled clips contain one or several frames
/ flow stacks, and produce the prediction separately. The
video-level prediction is given by the averaged softmax
scores of all clips.

We experiment with several state-of-the-art network
architectures, such as ResNet, ResNeXt, Inception[10],
Inception-ResNet, SENet[7], DPN[2]. These models are
pretrained on ImageNet, and have good initial weights for
further training. Table 1 and 2 show our TSN results on
Kinetics and Moments in Times dataset.

Models Top-1
acc(RGB)

Top-1
acc(Flow)

DPN107 75.95 69.60
ResNext101 75.43 None

SE-ResNet152 73.88 None
InceptionV4 73.51 68.76
ResNet152 72.04 67.13

InceptionV3 68.52 64.08
Table 1. Performance of TSN on Kinetics

2.2. Acoustic Model

While most motions can be recognized from visual in-
formation, sound contains information in another dimen-
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Models Top-1
acc(RGB)

Top-1
acc(Flow)

DPN107 31.06 None
ResNet152 30.21 None
ResNet269 None 18.53∗

ResNet101 None 22.82
Table 2. Performance of TSN on Moments in Times dataset.
*: Due to time limit, the training of these models was not finished.

sion. We use audio channels as complementary informa-
tion to visual information to recognize certain classes, espe-
cially for the actions with better distinguishability on sound,
whistling and barking for example.

We use the raw audio as input into the pre-trained VG-
Gish model[6][4], and extract n × 128 dimension features
to do classification (n is the length of audio). Besides, we
extract MFCC features from raw audio and train with SE-
ResNet-50 (Squeeze-and-Excitation Network) and ResNet-
50 (Deep residual network[5]). After ensembling with vi-
sual models, we achieve 0.7% improvement in top 1 error
rate.

Table 3 shows our acoustic results on on Kinetics and
Moments in Times dataset. Figure 1 shows 15 classes with
best top 1 accuracy in MIT validation dataset and2 a shows
25 classes with best top 1 accuracy in Kinetics validation
dataset.

Models Kinetics MIT
MFCC+ SENet-50 7.73 16.8

VGGish 7.83 17.12
Audio Ensemble 8.83 19.02

Table 3. Performance of acoustic models on Kinetics and MIT
dataset.

2.3. Non-local Neural Networks

Non-local Neural Networks[12] extract long-term tem-
poral information which have demonstrated the significance
of non-local modeling for the tasks of video classification,
object detection and so on.

Notation Image data and feature map data are generally
three-dimensional: channel, height and width (in practice
there is one more dimension: batch). They are represented
as C-dimensional vectors with 2-dimensional index

X = {xi|i = (h,w) ∈ D2,xi ∈ RC} (1)

where D2 = {1, 2, · · · , H} × {1, 2, · · · ,W}. Video data
get one more dimension time and are represented as C-
dimensional vectors with 3-dimensional index

X = {xi|i = (t, h, w) ∈ D3,xi ∈ RC} (2)

where D3 = {1, 2, · · · , T} × D2.

Non-local Operation Non-local operation define a
generic non-local operation in deep neural networks as:

yi =
∑

j∈D3

f(xi,xj)g(xj). (3)

Here function f representing the relation between position
i and j. Many visions of function f such as f(xi,xj) =
exp [θ(xi)

Tϕ(xj)] are discussed, but performed almost the
same.

As done in[1][3], a 2D k × k kernel can be inflated as a
3D t× k × k kernel that spans t frames, in our experiments
we used 32 frames. So this kernel can be initialized from
2D models(pretrained on Imagenet), each of the t planes
in the t × k × k kernel is initizlized by pretrained k × k
weights, rescaled by 1/t. Each video we sample 64 con-
secutive frames from the original full-length video and then
dropping every other frame. The non-local operation com-
putes the response at a position as a weighted sum of the
features at all positions with Embedding Gaussian. We used
5 non-local blocks added to i3d baseline. Table 4 shows
our non-local results on Kinetics and Moments in Times
dataset.

Models Kinetics MIT
Res50 baseline 78.63 30.83

Res50 non-local 80.80 32.96
Res101 baseline 79.58 31.33

Res101 non-local 81.96 33.69
Table 4. Performance of nonlocal NN on Kinetics and MIT dataset.

3. Relation-driven Models
We are interested in two questions. Firstly, non-local op-

erations would be important for relation learning, but global
operations may be unnecessary. If position i is far away
from j, then f(xi,xj) ≈ 0. Second quesion is that an un-
supervised function may not be able to learn relations.

Mask Non-local To answer the first question, we com-
pared the performance of non-local opeations and mask
non-local opeations:

yi =
∑

j∈D3

IDi(j)f(xi,xj)g(xj). (4)

Here Di is the δ− neighbourhood of i = (ti, hi, wi). Say:

Di = [ti−δt, ti+δt]×[hi−δh, hi+δh]×[wi−δw, wi+δw].
(5)

IDi
(j) is the mask function. Say:

IA(x) =

{
1 x ∈ A
0 x /∈ A . (6)
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Figure 1. Acoustic Model: 15 classes with best top 1 accuracy in MIT validation dataset
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Figure 2. Acoustic Model: 25 classes with best top 1 accuracy in Kinetics validation dataset.

δt δh δw top-1 acc
+∞ +∞ +∞ 80.80
+∞ 3

7H
3
7W 81.26

+∞ 3
28H

3
28W 80.63

1
2T

3
7H

3
7W 81.65

1
2T

3
28H

3
28W 80.93

Table 5. Perfomance for different settings of δ neighbourhood.

Table 5 shows mask nonlocal’s performance on Kinetics.
+∞ means non-local operation in the dimention. Note that
the first setting is the non-local baseline.

Learning Relations in Video Common convolution lay-
ers use invariant kernels for feature extraction at all posi-
tions in the feature map. It’s limited for learning relations
between different positions on the feature map. Nonlocal
operations compute a feature-map-wise relation matrix to
represent the kernel so that different positions get different
but related feature extractions. The problem is that an un-

supervised function may not be able for relations learning.
We proposed a new model to learn the relation patten.

The network contains a network-in-network with a
(2t0 + 1) × (2h0 + 1) × (2w0 + 1) size receptive field.
The network-in-network computes a (2t1 + 1) × (2h1 +
1)× (2w1 +1)-dimensional relation vector r(i) for any po-
sition i = (t, h, w) at the feature map (t1 < t0 < 1

2T ,
h1 < h0 <

1
2H and w1 < w0 <

1
2W ).

The learnable relation vector r(i) represent the relation
between position i and its neighbourhood

Di = [ti ± t1]× [hi ± h1]× [wi ± w1],

yi =
∑

j∈Di

r
(i)
j g(xj).

(7)

Here r(i)j is the jth element of r(i). Figure 3 shows our net-
work structure. Note that, by using mask non-local’s initial-
ization, our network can get better results than what table 5
shows. But due to time limit and training from scratch, we
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haven’t finished the experiments.

Figure 3. Our network structure for learning relations
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Abstract
In this report, our approach to tackling the task of Activ-
ityNet 2018 Kinetics-600 challenge is described in de-
tail. Though spatial-temporal modelling methods, which
adopt either such end-to-end framework as I3D [1]
or two-stage frameworks (i.e., CNN+RNN), have been
proposed in existing state-of-the-arts for this task, video
modelling is far from being well solved. In this chal-
lenge, we propose spatial-temporal network (StNet) for
better joint spatial-temporal modelling and comprehen-
sively video understanding. Besides, given that multi-
modal information is contained in video source, we
manage to integrate both early-fusion and later-fusion
strategy of multi-modal information via our proposed
improved temporal Xception network (iTXN) for video
understanding. Our StNet RGB single model achieves
78.99% top-1 precision in the Kinetics-600 validation
set and that of our improved temporal Xception network
which integrates RGB, flow and audio modalities is up
to 82.35%. After model ensemble, we achieve top-1 pre-
cision as high as 85.0% on the validation set.

1 Introduction
The main challenge lies in extracting discriminative
spatial-temporal descriptors from video sources for hu-
man action recognition task. CNN+RNN architec-
ture for video sequence modelling [2, 3] and purely
ConvNet-based video recognition [4, 5, 6, 7, 8, 1, 9]
are two major research directions. Despite considerable
progress has been made since several years ago, action
recognition from video is far from being well solved.

For the CNN+RNN solutions, the feed-forward CNN
part is used for spatial modelling, meanwhile the tem-
poral modelling part, e.g., LSTM [10] or GRU [11],
makes end-to-end optimization more difficult due to

∗Corresponding author: hedongliang01@baidu.com

its recurrent architecture. Taking feature sequence ex-
tracted from a video as input, there are many other
sequence modelling frameworks or feature encoding
methods aiming at better temporal coding for video clas-
sification. In [12], fast-forward LSTM (FF-LSTM) and
temporal Xception network are proposed for effective
sequence modelling and considerable performance gain
is observed against traditional RNN models in terms of
video recognition accuracy. NetVLAD [13], Action-
VLAD [14] and Attention Clusters [15] are recently pro-
posed to integrate local features for action recognition
and good results are achieved by these encoding meth-
ods. Nevertheless, separately training CNN and RNN
parts is harmful for integrated spatial-temporal represen-
tation learning.

ConvNets-based solutions for action recognition can
be generally categorized into 2D ConvNet and 3D Con-
vNet. Among these solutions, 2D or 3D two-stream
architectures achieve state-of-the-art recognition perfor-
mance. 2D two-stream architectures [4, 7] extract clas-
sification scores from evenly sampled RGB frames and
optical flow fields. Final prediction is obtained by sim-
ply averaging the classification scores. In this way, tem-
poral dynamics are barely explored due to poor tem-
poral modelling. As a remedy for the aforementioned
drawback, multiple 3D ConvNet models are invented
for end-to-end spatial-temporal modelling such as T-
ResNet [6], P3D [9], ECO [16], ARTNet [17] and S3D
[18]. Among these 3D ConvNet frameworks, state-of-
the-art solution is non-local neural network [19] which is
based on I3D [1] for video modelling and leverages the
spatial-temporal nonlocal relationships therein. How-
ever, 3D CNN is computational costly and training 3D
CNN models inflated from deeper network suffers from
performance drop due to batch size reduction.

In this challenge, we propose a novel framework
called Spatial-temporal Network (StNet) to jointly
model spatial-temporal correlations for video under-
standing. StNet first models local spatial-temporal cor-
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Figure 1: Illustration of constructing StNet based on ResNet [20] backbone. The input to StNet is a T × 3N ×H ×W
tensor. Local spatial-temporal patterns are modelled via 2D Convolution. 3D convolutions are inserted right after the
Res3 and Res4 blocks for long term temporal dynamics modelling. The setting of 3D convolution (# Output Channel,
(temporal kernel size, height kernel size, width kernel size), # groups) is (Ci, (3,1,1), 1).

relation by applying 2D convolution over a 3N -channel
super image which is formed by sampling N succes-
sive RGB frames from a video and concatenating them
in the the channel dimension. As for long range tempo-
ral dynamics, StNet treats 2D feature maps of uniformly
sampled T super images as 3D feature maps whose tem-
poral dimension is T and relies on 3D convolution with
temporal kernel size of 3 and spatial kernel size of 1
to capture long range temporal dependency. With our
proposed StNet, both local spatial-temporal relationship
and long range temporal dynamics can be modelled in
an end-to-end fashion. In addition, large number of con-
volution kernel parameters is avoided because we can
model local spatial-temporal with 2D convolution and
spatial kernel size of 3D convolution in StNet is set to 1.

Video source contains such multi-modal information
as appearance information in the RGB frames, motion
information among successive video frames and acous-
tic information in its audio signal. Existing works have
proved that fusing multi-modal information is helpful
[7, 15, 12]. In this challenge, we also utilize multiple
modalities to boost the recognition performance. We
improve our formerly proposed temporal Xception net-
work [12] and enable it to integrate both early-fusion and
later-fusion features of multi-modal information. This

model is referred to as improved temporal Xception net-
work (iTXN) in the following .

2 Spatial-Temporal Modelling
The proposed StNet can be constructed from existing
state-of-the-art 2D CNN frameworks, such as ResNet
[20], Inception-Resnet [21] and so on. Taking ResNet as
example, Fig.1 illustrates how we can build StNet. Sim-
ilar to TSN [7], we choose to model long range temporal
dynamics by temporal snippets sampling rather than in-
puting the whole video sequence. One of the differences
from TSN is that we sample T temporal segments which
consists of N contiguous RGB frames rather than one
single frame. These N frames are stacked to form a su-
per image whose channel size is 3N , so the input to the
network is a tensor of size T×3N×H×W . We choose
to insert two temporal modelling blocks right after the
Res3 and Res4 block. The temporal modelling blocks
are designed to capture the long-range temporal dynam-
ics inside a video sequence and they can be implemented
easily by leveraging Conv3d-BN3d-ReLU. Note that ex-
isting 2D CNN framework is powerful enough for spa-
tial modelling, so we set both height kernel size and
width kernel size of 3D convolution as 1 to save model
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Figure 2: Block diagram of our proposed improved temporal Xception network (iTXN) framework for multi-modality
integration. It is built based upon the temporal Xception network [12]. RGB, TV L1 flow, Farneback flow and audio
feature sequences are encoded individually for later-fusion and encoded jointly for early fusion with temporal Xception
block, respectively. Numbers in bracket of temporal Xception block denote (# Output Channel, kernel size, # group)
of Conv 1d layer.

parameters while the temporal kernel size is empirically
set to be 3. As an augmentation, we append a temporal
Xception block [12] to the global average pooling layer
for further temporal modelling. Details about temporal
Xception block can be found in the most right block of
Fig.2.

To build StNet from other 2D CNN frameworks such
as InceptionResnet V2 [21], ResNeXt [22] and SENet
[23] is quite similar to what we have done with ResNet,
therefore, we do not elaborate all such details here. In
our current setting, N is set to 5, T is 7 in the training
phase and 25 in the testing phase. As can be seen, StNet
is an end-to-end framework for joint spatial-temporal
modelling. A large majority of its parameters can be
initialized from its 2D CNN counterpart. The initializa-
tion of the rest parameters following the below rules: 1)
weights of Conv1 can be initialized following what the
authors have done in I3D [1]; 2) parameters of 1D or 3D
BatchNorm layers are initialized to be identity mapping;
3) biases of 1D or 3D Conv are initially set to be zeros
and weights are all set to 1/(3× Ci), where Ci is input
channel size.

3 Multi-Modal Fusion

Videos consist of multiple modalities. For instances,
appearance information is contained in RGB frames,
motion information is implicitly shown by the gradu-
ally change of frames along time and audio can pro-
vide acoustic information. For a video recognition sys-
tem, utilizing such multi-modal information effectively
is beneficial for performance improvement. Existing
works [15, 12] have evidenced this point.

In this piece of work, we also follow the common
practice to boost our recognition performance by inte-
grating multi-modal information, i.e., appearance, mo-
tion and audio. Appearance can be explored from RGB
frames with existing 2D/3D solution as well as our pro-
posed StNet. To better utilize motion information, we
extract optical flows from video sequences not only with
the TV L1 algorithm [24] but also with the Farneback
algorithm [25]. As for audio information, we simply
follow what have been done in [26, 12].

Fusing multi-modal information have been exten-
sively researched in the literature. Early-fusion and
later-fusion are the most common methods. In this pa-
per, we propose to combine early-fusion and later-fusion
in one single framework. As is shown in Fig.2, pre-
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extracted features of RGB, TV L1 flow, Farneback flow
and audio are concatenated along with the channel di-
mension and its output is fed into a temporal Xception
block for early fusion. These four feature modalities are
also encoded with temporal Xception block individually.
Afterwards, the early-fusion feature vector are concate-
nated with the individually encoded features of the four
modality for classification.

4 Experiments
In this section, we report some experimental results to
verify the effectiveness of our proposed frameworks. All
the base RGB, flow and audio models evaluated in the
following subsection are pre-trained on the Kinetics-400
training set and finetuned on the Kinetics-600 training
set. All the results reported below are evaluated on the
Kinetics-600 validation set.

4.1 Spatial-Temporal Modelling
To show the effectiveness of the proposed StNet, we
have trained StNet with InceptionResnet V2 [21] and
SE-ResNeXt 101 [23, 22] and a series of baseline RGB
models, denoted as StNet-IRv2 and StNet-se101 respec-
tively. As we know, the state-of-the-art 2D CNN models
for action recognition is TSN [7], and we implemented
TSN with InceptionResnet V2 and SE-ResNeXt 152
backbone networks. In the following context, we denote
these two models as TSN-IRv2 and TSN-se152 respec-
tively. We also introduced VLAD encoding + SVM on
the TSN-IRv2 Conv2d 7b feature. Nonlocal neural net-
work is state-of-the-art 3D CNN model for video classi-
fication, so we also finetuned nonlocal-net as a baseline
model with the codes released by the authors.

Table 1: Performance comparison among StNet and
baseline RGB models.

Model Prec@1
TSN-IRv2 (T=50, cropsize=331) 76.16%
TSN-se152 (T=50, cropsize=256) 76.22%

TSN-IRv2 + VLAD + SVM 75.6%
Nonlocal Net (30crops, 32 frames/crop) 78.6%

StNet-se101 (T=25, cropsize=256) 76.08%
StNet-IRv2 (T=25, cropsize=331) 78.99%

Evaluation results are presented in Tabel.1. We can
see from this table that StNet-IRv2 outperforms TSN-
IRv2 by up to 2.83% in top-1 precision and it also
achieves better performance than nonlocal-net. Please

note that our StNet-se101 performs comparable with
TSN-se152, which also evidences the superiority of the
StNet framework.

4.2 Multi-Modal Fusion

In this work, we exploit not only RGB information,
but also TV L1 flow [24], Farneback flow [25] and au-
dio information [26] extracted from video sources. The
recognition performances with each individual modal-
ity are listed in Table.2. For multi-modality fusion,
StNet-IRv2 RGB feature, TSN-IRv2 TV L1 flow fea-
ture, TSN-se152 Farneback flow feature and TSN-VGG
audio feature are used for better complementarity.

Table 2: Recognition performance of each individual
modality.

Modality Prec@1
TSN-IRv2 TV L1 65.1%

TSN-IRv2 Farneback flow 69.3%
TSN-se152 Farneback flow 71.3%

StNet-IRv2 RGB 78.99
TSN-VGG audio 23%

To evaluate iTXN which is designed for multi-modal
fusion, we compared it with several baselines: Atten-
tionClusters [15], Fast-Forward LSTM and temporal
Xception network which are proposed in [12]. The re-
sults are shown in the Table.3. From this table, we can
see that iTXN is a good framework for integrating mul-
tiple modalities.

Our final results are obtained by ensembling multiple
single modality models and several multi-modal models
by gradient boosting decision tree (GBDT) [27]. After
model ensemble, we finally achieve top-1 and top-5 pre-
cision of 85.0% and 96.9% on the validation set.

Table 3: Recognition performance of multi-modal fu-
sion and model ensemble.

Model Prec@1 Prec@5
temporal Xception network 81.8% 95.6%

Fast-Forward LSTM 81.6% 95.1%
AttentionClusters 82.3% 96.0%

iTXN 82.4% 95.8%
Model Ensemble 85.0% 96.9%
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5 Conclusion
In this challenge, we proposed a novel StNet end-to-
end framework to jointly model spatial-temporal pat-
terns in videos for human action recognition. In order
to better integrate multi-modal information which is nat-
urally contained in video sources, we improved tempo-
ral Xception network to combines both early-fusion and
later-fusion of multiple modalities. Experiment results
have evidenced the effectiveness of the proposed StNet
and iTXN.
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[25] Farnebäck, G.: Two-frame motion estimation
based on polynomial expansion. Image analysis
(2003) 363–370

[26] Hershey, S., Chaudhuri, S., Ellis, D.P., Gem-
meke, J.F., Jansen, A., Moore, R.C., Plakal, M.,
Platt, D., Saurous, R.A., Seybold, B., et al.:
Cnn architectures for large-scale audio classifica-
tion. In: Acoustics, Speech and Signal Process-
ing (ICASSP), 2017 IEEE International Confer-
ence on, IEEE (2017) 131–135

[27] Friedman, J.H.: Stochastic gradient boosting.
Computational Statistics & Data Analysis 38(4)
(2002) 367–378

6



 	

 
 

Samsung & SIAT Submission to ActivityNet Challenge 2018 
 
 

Wenhao Wu1,2*, Wenbo Chen2*, Shifeng Chen1, Zhenbo Luo2 

1 Shenzhen Institutes of Advanced Technology, CAS, China 
2Samsung R&D Institute of China - Beijing, China 

 
{wh.wu, shifeng.chen}@siat.ac.cn, zb.luo@samsung.com 

 
 
 

Abstract 
 

This paper describes the method for the Samsung & 
SIAT submission to the trimmed activity recognition 
(Kinetics) tasks of the ActivityNet Large Scale Activity 
Recognition Challenge 2018. Motivated by [11], We 
integrate short-term temporal information with 3D Pooling 
models and long-term temporal information with temporal 
segment networks [10]. We also utilize multi-modal 
information, including audio and visual streams presenting 
in the videos. We pre-train models on Kinectics-400 dataset 
[4], then finetune them on Kinetics-600 dataset [14]. Our 
system finally obtains an averaged top-1 and top-5 error 
percentage of 14.977% on the test set. 

 
 

1. Introduction 

Trimmed action recognition, as its importance of 
understand human behaviors in videos, becomes a hot and 
basic topic in computer vision.  

Benchmarks and related competitions have made great 
contributions to the action recognition research, such as 
HMDB-51 [7], UCF-101 [6], and so on. Especially the 
ActivityNet series challenges [2] and related datasets attract 
more and more research teams from the academic and 
industry. The latest version of Kinetics dataset, the Kinetics-
600 [14] containing 500,000 trimmed video with 600 action 
categories, is released this year. It is an approximate super-
set of the initial Kinetics-400 dataset [4] released in 2017. 
The actions cover a broad range of classes including 
human-object interactions such as playing instruments, and 
human-human interactions such as shaking hands, hugging, 
and so on. 

Deep learning based frameworks become the main   

∗Work done while as intern in Machine Learning Lab, Samsung R&D   
Institute of China - Beijing. 

stream of action recognition in recent years. Among these 
frameworks, Two-stream [5], C3D [8], TSN [10], have 
achieved impressive results on the benchmark datasets. 
However, how to learn the spatiotemporal structure from 
videos is still remained a challenging task. One reason is 
mainly due to the computational resources needed for the 
task. The other reason is due to the lack of large and robust 
datasets. As a result, previous method transfer image-level 
object recognition representation to video-level action 
recognition representation. 

In this report, we focus on learning video-based 
representation using Kinetics-600 dataset [14]. Different 
from image-level recognition, temporal structure and motion 
representation are essential for action recognition. We use 
temporal segment networks [10] as our base model, and 
increase the number of segments to model more long-term 
temporal information. We use 3D pooling units to model the 
short-term temporal information. Videos are naturally 
multimodal because a video can be decomposed into visual 
and acoustic components. Besides visual component such as 
RGB frames and stacked optical flow fields, we observe that 
acoustic signal coming along with the visual component 
provides complementary information. Combining all of the 
visual, and acoustic models, we attain a high recognition 
accuracy (average error of 14.977% on Kinetics-600 testing 
set). 

The remaining part of this report is organized as follows. 
Section 2 present the details for trimmed action recognition. 
Section 3 concludes this work. 
 
2. Methodology 

In this year’s challenge, the trimmed action recognition task 
in conducted on the Kinetics-600 dataset [14]. The dataset 
consists of approximately 500,000 video clips, and covers 
600 human action classes with at least 600 video clips for 
each action class. Each clip lasts around 10 seconds and is 
labeled with a single class. Our efforts on this task are 
focused on how to utilize temporal information, and muti-



 	

stream CNNs, to learn the better 2D-CNN features for 
video-based action recognition.  

2.1. 3D Pooling with Temporal Segment Network 

We follow the pipeline of temporal segment networks 
(TSN) [10] to model the long-term temporal information. 
However, in the original TSN [10], the underlying ConvNet 
models are using 2D inputs. To further exploit short-term 
temporal variation between neighboring frames, we 
propose to inflate the original 2D model into a 3D version. 
The number of input frames in each snippet is changed to 8. 
Specifically, in order to reduce computation, we inflate 
pooling layers to 3-dimensional instead of using 3-
dimensional convolutional. Then using TSN, we divide 
every 10-second video to a fixed number of segments, such 
as 3, 5 and 7. We found that using 3D pooling with TSN can 
get a better boost of performance compared with original 
TSN models. The results are illustrated in Table 1. During 
training, one short snippet is sampled from each segment, 
which forms a sparse snippet sampling scheme. The 
snippet-wise prediction is then aggregated using average 
pooling. During testing, we follow the standard procedure 
of using 25 frames uniformly extracted from the testing 
videos and average the predictions. Due to Kinetics-600 is 
an approximate super-set of Kinetics-400, first we 
experiment with several normal network architectures such 
as BN-Inception [3] and Inception-V3 [13] on Kinetics-400 
[4]. And these models pre-trained from ImageNet [1]. Then 
we finetune the Kinetics-400 models on Kinetics-600 with 
more segments. The results are illustrated in Tabel2.  

Table 1. Performance comparison of 3D-pool models and 
original TSN models on Kinetics-400 val set [4]  

Models RGB Flow 
Top-1 Top-5 Top-1 Top-5 

BN Inception 72.68% 90.10% 64.55% 85.72% 
Inception V3 73.85% 91.04% 65.20% 86.63% 

TSN 69.03% 89.12% 62.81% 83.65% 

Table 2. Performance of different 3D-pool models on Kinetics-
600 val set [14]. 

Modality base model Top-1 Top-5 
RGB Inception BN 72.16% 91.02% 

FLOW Inception BN 65.72% 86.79% 
RGB Inception V3 73.79% 92.10% 

FLOW Inception V3 66.59% 87.30% 
 
  2.2. Acoustic Information 

Audio also provides a lot of important information for 
video classification. For example, occlusions seriously 
decrease the recognition accuracy of RGB or optical flow 
features based methods, but does not affect acoustic 
features.  

We use a CNN-based [12] audio action recognition 
system to extract acoustic features. We transform the raw 

audio signal to log-mel spectrogram as input of CNN model. 
Audio preprocessing is as follows:  

1) Resample audio to 16 kHz mono, then compute 
spectrogram using magnitudes of the Short-Time 
Fourier Transform with a window size of 25 ms, a 
window hop of 10 ms, and a periodic Hann window.  

2) Compute mel spectrogram by mapping the 
spectrogram to 64 mel bins and stabilize log mel 
spectrogram by applying log where an offset is used to 
avoid logarithm of zero.  

3) These features are then framed into non-overlapping 
examples of 0.96 seconds, where each example covers 
64 mel bands and 96 frames of 10 ms each.  

We also attempt another scale spectrogram with 
parameters 2.5ms for window size, 1ms for window hop and 
9.6ms per frames. These examples are then fed into the CNN 
model to extract embedding. 

The CNN architectures are Inception-ResNet-v2 [9] and 
BN Inception [3], initialized by ImageNet [1] pre-trained 
parameters. We also train the acoustic models with multiscale 
spectrogram using temporal segment network framework 
[10]. The results of them are summarized in Table 3. We find 
large scale spectrogram always performs better, and increase 
the number of segmentation not always improve accuracy. 
Finally, we confirm that audio features and visual features 
can complement each other in an ensemble way. 

Finally, we choose the averaging fusion approach to 
ensemble muti-stream models as it is a simple and fast 
approach. The result is summarized in Table4.  

Table 3. Results of audio CNN on Kinetics600 [14] val set 
Network Scale TSN segment Top-1 Top-5 

Inception-
ResNet-v2 

960* 1 0.226 0.389 

Inception-
ResNet-v2 

960 3 0.231 0.396 

Inception-
ResNet-v2 

960 10 0.232 0.401 

BN Inception 960 1 0.171 - 
BN Inception 960 3 0.187 - 
BN Inception 960 10 0.193 - 
BN Inception 96 3 0.096 - 
BN Inception 96 10 0.116 - 

Ensemble - - 0.254 - 
*960 is large scale spectrogram which is extracted every 960 ms, 

96 is small scale spectrogram which is extracted every 96 ms. 
 
Table 4. Results on Kinetics-600 [14] test set. The avg. error is the 
average of top-1 and top-k error.  

 
 
 

 
3. Conclusions 
 

 This paper reports our team’s solution to the task of 
trimmed action recognition. We proposed a three-stream 
CNN to exploit the spatial, motion and acoustic information 

Models avg. error 
model ensemble 0.14977 



 	

of the trimmed videos. We presented the importance of 3D 
spatiotemporal models for visual component. We exploited 
audio information as the complementary to visual 
information, improving performance in an ensemble way. 
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Abstract

This technical report details the framework used by
Alibaba-Venus team for the task of spatio-temporal action
localization (AVA) in the ActivityNet challenge 2018. Our
framework basically follows the common infrastructure,
i.e., “actor detector” plus “action classifier”, as proposed
in [2], with some modifications on the choices of object-
detector and 3D net backbone. Specifically, we adopt RFB-
Net, a computational efficient SSD variant, as “actor detec-
tor” and Pseudo-3D Residual Net (P3D) / Inflated 3D Con-
vNet (I3D) as “action classifier”. For simplicity, we name
models according to their 3D-net backbones: P3D-RFBNet
and I3D-RFBNet. During the challenge, we test the P/I3D-
RFBNet on different modalities (i.e., RGB and optical-
flow), with different fusion and testing-augmentation strate-
gies. Experimental results show that P/I3D-RFBNet achieve
promising performances on both RGB and optical-flow
modalities, and benefit from fusion/testing-augmentation
strategies.

1. Introduction

Human action/activity classification has been intensively
studied in the past five years. The proposal of two-stream
3D convolutional neural networks, such as C3D [7], I3D
[1], P3D [5] and etc., greatly boost the development of
video-level activities classification, laying a good base for
even finer-grained level activities detection: atomic action
of human instance. In 2017, google releases a carefully
annotated action dataset named “Atomic Visual Actions”
(AVA) [2], which annotates human instances in videos
with bounding boxes and action labels, targeting at fine-
grained action detection. Unlike promising results obtained
on video-level activity classification, the new atomic action
detection is more challenging, since it requires much finer
inspections.

For this year’s spatio-temporal action localization chal-
lenge (AVA), we propose P/I3D-RFBNet, following the
common infrastructure: “actor detector” plus “action clas-

Figure 1. Overview of P/I3D-RFBNet. A mid-frame and its wrap-
ping clip are separately fed into actor detector and action classi-
fier. The former serves for actor locating, whereas, the latter serves
for action classifying (the figure is best viewed in color).

sifier” in [2], with some modifications. Specifically, we
replace Faster-RCNN with RFBNet [3] as actor detector,
since RFBNet achieves a good trade-off between detection
speed and accuracy. For action recognition, we incorporate
3D-net, RoI-align layer and multi-layer perceptron as ac-
tion classifier. Equipped with P/I3D-RFBNet, we mainly
explore the following aspects during the challenge.

• RFBNet as actor detector: Unlike baselines [6], we
chose the lightweight RFBNet, instead of the compu-
tationally heavy Faster-RCNN, as actor detector. Ex-
perimental results show that the RFBNet even demon-
strates a superior detection performance than the
Faster-RCNN on AVA dataset.

• P/I3D-RFBNet on RGB/optical-flow modalities: We
separately train P/I3D-RFBNet models on RGB
and optical-flow modalities. We observe that P/I3D-
RFBNet achieve promising performances on both
modalities.

• Modalities’ ensemble: We adopt average-fusion strat-
egy to ensemble models trained on different modali-
ties. Specifically, predicted scores by different models
on the same actor bounding boxes are averaged. Ex-
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perimental results show that the ensemble strategy in-
troduces considerable improvements.

• Testing augmentation: Actor action might exceed the
duration of fixed-length clip, we propose a testing aug-
mentation method named shift-pred to ease the prob-
lem. The main idea of shift-pred is slightly jittering
video-clip forward or backward in temporal dimension
before feeding it into the neural network. We fuse re-
sults obtained with/without jittering to get a better per-
formance.

The remainings of this paper are organized as below.
In the methodology part, we briefly introduce modules in
our infrastructure. Then we present experimental results for
AVA challenge. Finally, we conclude this report in the last
section.

2. Methodology

As shown in Figure 1, our model is composed of two
modules (separated by dased line): actor detector and ac-
tion classifier. To ensure a large batch size, we train the
two modules in a two-step style. Specifically, actor detec-
tor is firstly fine-tuned on AVA-v2 dataset to detect human
beings. Then, we fixed parameters in actor detector and
only train action classifier. Also, we separately train ac-
tion classifier on RGB and optical-flow modalities. Predic-
tion scores of RGB and optical-flow modalities on the same
bounding boxes are averaged. We will elaborate the two
modules as below.

2.1. Actor Detector

We adopt RFBNet [3], a variant of SSD [4], as actor de-
tector. The RFBNet shares the following advantages: real-
time computational speed and competitive detection accu-
racy as Faster-RCNN++ 1. We adopt the optimal settings,
i.e., RFBNet512-E, in training human detector. On AVA-v2
validation set, RFBNet achieves 93.1% mAP@0.5, which
is higher than 75.3% by Faster-RCNN in [2].

2.2. Action Classifier

Human action classifier is composed of three submod-
ules: 3D net, RoI-align layer, and mutli-layer percep-
tron. Specifically, given RoIs, RoI-algin layer fetches sub
feature-maps out of 3D feature-map and then feeds them
into multi-layer perceptron for action categorization. Fol-
lowing common settings, our multi-layer perceptron con-
tains three fully connected (fc) layers, with two of them
followed by relu activations. To avoid overfitting, dropout
layer is also launched before the first two fc layers.

1https://github.com/ruinmessi/RFBNet

3. Experiments

3.1. Settings

Experimental settings regarding frame representation,
hyperparameters of P/I3D-RFBNet are elaborated in this
section.

Frame Representation: We extract frames out of videos
at 25 fps, regardless of their original frame rate, and then
resize all frames in 512 × 512 without keeping their as-
pect ratio. Same fps and resolution as RGB modality, we
extract TVL1 optical flow for each video using toolkit pro-
vided in 2. Denoting xi as the i-th frame to be tested, we
collect a clip ci = {xi−m, xi−m+1, . . . , xi+n} wrapping
xi. The frame-clip pair {xi, ci} serves as input for actor-
detector/action-classifier module. For test witout shift-pred,
we set (m = 7, n = 8), whereas, for two tests with shift-
pred, we set (m = 4, n = 11) and (m = 11, n = 4).

Hyperparameters of P/I3D-RFBNet: When forward-
ing 3D net, each clip ci can be represented by fi ∈
RC×T×H×W feature-map.Average-pooling operator is ap-
plied to squeeze the temporal channel, transfering fi into
f̂i ∈ RC×H×W . For RoI-align layer, we experimentally
set RoI size to be 16 × 16 for I3D-RFBNet, and 7 × 7 for
P3D-RFBNet.

3.2. Results

Table 1. AVA-v2: Performances of modalities and their ensembles
on validation and test set (frame-mAP@0.5 in percentage).

AVA-v2 (Val) AVA-v2 (Test)
% %

Faster-RCNN (RGB, ResNet-101)[2] 11.25 -
I3D-RFBNet (RGB) 15.59 -
I3D-RFBNet (OptFlow) 15.70 -
P3D-RFBNet (RGB) 15.69 -
P3D-RFBNet (OptFlow) 13.63 -
I3D+P3D-RFBNet (RGB) 17.33 15.30
I3D+P3D-RFBNet (OptFlow) 16.10
I3D+P3D-RFBNet (RGB + OptFlow) 19.09 -
I3D+P3D-RFBNet (RGB + OptFlow) + Shift-Pred 19.37 17.67

We conduct experiments on different modalities, cross-
modalities fusion, and testing augmentation, the results are
presented in Table 1. We observe that: (1). P/I3D-RFBNet
show promising results on both RGB/optical-flow modal-
ities, verifying their robustnesses. (2). Fusion of P3D-
RFBNet and I3D-RFBNet shows considerable improve-
ment, indicating 3D net backbones are complementary to
each other. (3). Multi-modalities fusion brings further im-
provements. (4). Testing augmentation, i.e., shift-pred, also
show its effectiveness.

2https://github.com/yjxiong/dense flow
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4. Conclusion
We have present P/I3D-RFBNet for ActivityNet chal-

lenge 2018, the P/I3D-RFBNet shows their effectiveness in
detecting actors’ actions on RGB/optical-flow modalities.
Also, we find some useful engineering tricks, such as shift-
pred in the exploration.
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Abstract—This paper describes our solution for the spatio-
temporal action localization of ActivityNet AVA challenge. Our
system is consisted of three components: a human detector, an
action classification module and an actor-target relation network.
We first apply a region proposal network (RPN) to detect human
in the videos, since AVA mainly contains human-centric action
categories. Then we conduct the action classification by adopting
the ROI pooling operation on the human regions. In order to
capture the human-object relationships, we further design an
actor-target relation network, which is achieved with a non-local
operation between the ROI and its surrounding regions. Our
method obtains 25.63% and 25.75% in terms of mean average
precision (mAP) on the validation set of the two tracks, and
20.56% and 20.78% on the testing set.

I. INTRODUCTION

Spatial-temporal action recognition and localization has
received significant research attention in the computer vision
communities [3], [28], [30], [31] due to its enormous appli-
cations such as public security, event recognition and video
retrieval. There are some publicly available datasets such as
UCF-Sports [16], J-HMDB [6] and UCF101 [21], [8], which
have made great contribution to improve the performance
for the task of action recognition and detection. Based on
these benchmarks, there are a few promising deep model
based methods, including TS (two streams) framework [18],
C3D [22], TSN [25], p3d [14] and Artnet [23] for action
recognition. These methods mainly try to extract different
vision cues, such as short video clips [14], [22], [23], motion
information [18] and long-range video clips [25]. Meanwhile,
recent object detection methods, such as faster-RCNN [15],
light head RCNN [9] and megdet [12], also make significant
process for the general object detection.

Recently, some detection methods such as ACT [7], online
method [20], multi-region faster-RCNN [13], achieve impres-
sive results on the public datasets in the detection frameworks.
In this challenge, the AVA dataset [4] is more challenging and
we aim to apply different clues to extract video representation.
In this report, we mainly adopt three modalities, including
appearance, motion and audio information. Noting that, the
audio feature is only applied in the full track. To conduct
action detection, we design our method in the Faster-RCNN

Preprocessing
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Fig. 1. The designed framework in our method. We split the spatio-temporal
action localization into two subtasks, including human detection and action
classification. Given the detections, we mainly focus on extracting multi
vision cues, such as appearance information, motion information, and acoustic
features. By applying ROI pooling, we can integrate the results from different
models.

[15] framework. To better fit the framework on the action
localization, we propose to apply a good pretrained human
detectors as the RPN module, shown in Fig. I. Following the
RPN, we train the action classification network in an end-
to-end manner. Moreover, we design an actor-target relation
(ATR) network to extract correlation between the actors and
the corresponding targets. For this purpose, we conduct non-
local operation between the ROI and its surrounding regions.
The applied base models mainly focus on short- or long-term
input clips, including i3d [1] with non-local module [26], C3D
[22], and TSN [25].

For the RPN module, we apply FPN model [10] because of
its high recall and precision. Given the proposal regions, we
apply ROI pooling [15] to extract features and classify each
proposals. After that, a posterior fusion strategy is used to give
the final predictions of action categories of every correspond-
ing target. Attributed to the structure of the designed model,
we obtain 10% gain than the baseline method [4]. We show
the overview in the Fig. I.

The remaining sections are organized as follows. Section
II presents the details of our method. In section III, we
also present some experimental results. Finally, this report
concludes in section IV.
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Fig. 2. The overview of our method. First, we explore different vision cues, which are respectively fed into RPN and feature extractors. Then we apply ROI
pooling operation based on the proposal regions and the corresponding feature maps. After that, we explore different integration strategies on the applied
models. Finally, we calculate the location results by considering the classification results and proposal regions.

II. THE PROPOSED METHOD

In this section, we first introduce the utilized multiple clues.
Then we present the framework of action localization and
classification in both tasks of AVA challenges.

A. Multi clues

Action localization is a complex task and is very challeng-
ing. We explore several modalities for this task, including
short-term clips, long-range temporal structure, motion infor-
mation and acoustic features.

Short-term clips. Inspired by most 3D CNNs, such as C3D
[22], P3D [14] and I3D [1], we apply several continuous clips
as input to extract short-term video representation. As shown
in the benchmark [4], long clip and large input size is helpful
to improve the performance. Therefore, we explore the applied
inputs with different length and size to better understand their
influence to the final action classification results.

In the AVA dataset [4], the action instances are sparsely
annotated per second. Therefore, we extract one clip in a short
time interval to predict the target actions. In our method, we
apply the I3D Resnet [26], and P3D [14] to conduct the video
representation. All the models are pretrained in Kinetics [8]
in advance.

Long-range sampling. TSN [25] is proved to be a powerful
method of long-range temporal structure modeling. Similar
to TSN [25], we apply uniform sampling strategy to sample
n frames for the model to learn. In our method, we find it
effective to apply the sampling in the traditional 2D CNN.
Therefore, we just adopt 2D model in this framework, such as
resnext [27], resnet [5] and artnet18 [24].

Before the ROI pooling module [15], we integrate the
frame-level feature by using average pooling scheme along
the time axis.

Motion clues. To better extract micro motion information
between two consecutive frames, we calculate optical flow
to be used as a modality of input for the deep models. We
first compute the horizontal and vertical motion maps, which

construct the two independent channels. For the third channel,
we simply apply point-wise multiplication between these two
maps.

In this paper, we extract optical flow by applying TV-L1 [29]
method which is integrated in the Opencv tools. Moreover,
we also explore different methods of optical flow, such as
Farneback [2], to add variety to the modality.

Acoustic features. Acoustic information is also discrimi-
native for some actions, such as “play musical instrument”,
“sing”. Therefore, we try to extract acoustic feature to im-
prove our video representation. Similar to CNN based audio
classification task [17], we divide the videos into frames every
1s, following which Fourier transformation and histogram
integration are adopted. Given the new frames, we apply a
VGG16 [19] model to conduct action classification based on
a pre-trained model on the Kinetics dataset.

B. Action Localization
In this section, we mainly introduce RPN module and

classification module.
RPN module. The goal of these two tasks is to localize

human centric spatio-temporal action, hence we hold the point
that the RPN module should have good performance on human
detection. In our method, we apply feature pyramid networks
(FPN) [10] to reach this goal, for its better performance. The
FPN detector is first pretrained on MSCOCO dataset [11] and
then is fine tuned on the AVA dataset [4]. By this means, we
can obtain 96.5% recall and 81.6% accuracy on the evaluation
set on an Intersection over Union(IoU) threshold of 0.5.

Action classification. As aforementioned, we design our
method in the faster RCNN [15] framework. We apply the
ROI pooling [15] strategy based on the proposal regions and
the corresponding base models. We locate the ROI pooling
layer after the last feature maps, followed by a classification
branch. For the classification network, sigmoid function is
used as in [4]. Finally, the output of the classification branch
is used as the classification probability prediction results of
the corresponding proposal boxes.



TABLE I
RESULTS ON VALIDATION SET.

Model Input Modality Operation mAP (%)
Faster-RCNN [4] (3, 40(RGB)+40(Flow), 360, 400) RGB + Flow - 16.2

i3d resnet50 + NL

(3, 20, 224, 224) RGB - 19.33
(3, 20, 224, 224) RGB ATR 20.01
(3, 40, 224, 224) RGB 40 clips 19.37
(3, 20, 360, 400) RGB (360,400) size 19.86

(3, 20(RGB)+20(Flow), 224, 224) RGB + Flow add 21.66
P3D199 (3, 20(RGB)+20(Flow), 224, 224) RGB + Flow - 17.87

resnet152 (3, 20, 224, 224) RGB TSN 14.68
artnet18 (3, 20, 224, 224) RGB - 16.67
Vgg16 - Audio - 6.5

Ensemble(Vison Only) 25.63
Ensemble (Full) 25.75

To further improve the performance, we also explore fol-
lowing several different strategies: (i) we concatenate or add
the feature maps from different networks; (ii) we simply
average the scores before or after sigmoid function; (iii) top-
k fusion scheme are adopted for the ensemble process; (iv)
we concatenate the features of RGB and Flow streams on the
fully connected layer. (v) ROI align method is also explored.

In our method, we integrate all the model to calculate the
results of our human detections. In the experiments, we find
that apply k = n//2 (n is the number of the total applied
models), and fusion before sigmoid function can lead to better
results.

C. Extract Actor-Target Relationship

In the AVA dataset [4], we observed that the annotation
boxes mainly contain the human but lose much attention on
the targets, such as “grab (a person)” and “hug (a person)”.
We speculate the performance could be further improved by
incorporating the the Actor-Target relationship (ATR).

Inspired by the successful application of the non-local [26]
network on the action recognition, we adopt the non-local
operation to extract ATR. Particularly, we conduct non-local
operation between the ROI feature and features outside the
bounding boxes. By this means, we can learn the discrimina-
tive relationship related to the actors. Experiments also show
that this structure effectively captures the motion by bridging
between people and the interactive objects through space and
time domain.

D. Training

In this section, we present some details of our method
during training stage. We train our network end-to-end with
invariant 0.001 learning rate. For each model, we train about
5 epoches. We train our model on the 8 P40 GPUs for each
experiments and the batch size is 16. When fusing different
models, we freeze the base model before ROI pooling layer.

III. EXPERIMENT RESULTS

In this section, we respectively report our performance on
the validation and testing set in the Table II-A and Table III.
In the Table II-A, we show the results with different 2D/3D
models. All the 3D models are first pretrained on Kinetics

[8], and all the 2D models are pretrained on the Imagenet.
Extracting the ATR can obtain about 0.68%, which means
it is indeed helpful to learning the relationship for action
classification. Finally, our method obtain 25.63% and 25.75%
in terms of mAP on the two tasks.

In the Table III, our method get 20.56% and 20.78% mAP
on the testing set. We find that there is about a gap of 5%
between validation and testing set, we think the reason may
be that there are different number of videos of the two sets.

TABLE II
RESULTS ON TESTING SET.

Tasks mAP(%)
Computer Vision ONLY 20.55

Full 20.77

IV. CONCLUSION

In the Activitynet-AVA Challenge 2018, we propose a
new framework for the human centric spatio-temporal action
localization. We design our method under the faster-RCNN
framework, but propose to apply a good human detector as
the RPN module. Meanwhile, we apply non-local operation
between the proposal regions and their surrounding regions to
extract actor-target relation (ATR). Moreover, we also explore
different integration strategies to extract multi vision cues.
By this means, we achieve significant improvement again the
baseline method. In the future, we will explore the correlation
between different actions and learn this correlation in the deep
models.
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Abstract. We introduce a simple baseline for action localization on the
AVA dataset, that showcases the value of pretraining video models on the
Kinetics-600 dataset. The model builds upon the faster-RCNN bounding
box detection framework, adapted to operate on pure spatiotemporal
features – in our case produced exclusively by an I3D model pretrained on
Kinetics-600. This model obtains 21.6% average AP on the validation set
of AVA v2.1, up from 14.5% of the best RGB spatiotemporal model used
in the original AVA paper (which was pretrained on Kinetics-400 and
ImageNet), and up from 11.3% of the publicly available baseline using a
ResNet-101 image feature extractor, that was pretrained on ImageNet.

1 Introduction

Despite considerable advances in the ability to estimate position and pose for
people and objects, the computer vision community lacks models that can de-
scribe what people are doing at even short-time scales. This has been highlighted
by new datasets such as Charades [1] and AVA [2], where the goal is to recog-
nize the set of actions people are doing in each frame of example videos – e.g.
one person may be standing and talking while holding an object in one moment,
then it puts the object back and sits down on a chair. The winning system of the
Charades challenge 2017 obtained just around 21% accuracy on this per-frame
classification task. On AVA the task is even harder as there may be multiple
people and the task requires also localizing the people and describing their ac-
tions individually – a strong baseline gets just under 15% on this task [2]. The
top approaches in both cases used I3D models trained on ImageNet [3] and the
Kinetics-400 dataset [4].

Recently the Kinetics-400 dataset was expanded into Kinetics-600 [5], intro-
ducing 50% new classes and approximatey 60% new training videos. An open
question is how much impact this size increase has in the quality of the models
when transferring from Kinetics to different tasks and datasets. In this paper
we aim to answer this question using the new AVA dataset. The resulting model
was an entry to the 2018 AVA challenge.

2 Model and Approach

Our model is inspired by I3D [6] and Faster R-CNN [7]. We start from labeled
frames in the AVA dataset, and extract a short video clip, typically 64 frames,
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RoIPool I3
D 80-way

action
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1. Extract clip-features using I3D 2. Compute regions on center frame features 3. Extend regions temporally

4. Extract video-features for the region 5. Classify actions

Fig. 1. Network architecture. We build upon I3D and Faster R-CNN architectures.
A video clip is passed through the first few blocks of I3D to get a video representation.
The center frame representation then is used to predict potential ‘person’ regions using
a region proposal network (RPN). The proposals are extended in time by replicating,
and used to extract a feature map for the region using RoIPool. The feature map is
then classified into the different actions using two I3D blocks.

around that keyframe. We pass this clip through I3D blocks upto Mixed 4f,
which are pre-trained on the Kinetics-600 dataset for action classification. The
feature map is then sliced to get the representation corresponding to the center
frame (the keyframe where the action labels are defined). This is passed through
the standard region proposal network (RPN) [7] to extract box proposals for
persons in the image. We keep the top 300 region proposals for the next step:
extracting features for each region that feed into a classifier.

Since the RPN-detected regions corresponding to just the center frame are
2D, we extend them in time by replicating them to the match the temporal
dimension of the intermediate feature map, following the procedure for the orig-
inal AVA algorithm [2]. We then extract an intermediate feature map for each
proposal using the RoIPool operation, applied independently at each time step,
and concatenated in time dimension to get a 4-D region feature map for each
region. This feature map is then passed through the last two blocks of the I3D
model (up to Mixed 5c, and classified into each of the 80 action classes. The
box classification is treated as a non-exclusive problem, so probabilities are ob-
tained through an independent sigmoid for each class. We also apply bounding
box regression to each selected box following Faster-RCNN [7], except that our
regression is independent of category (since the bounding box should capture the
person regardless of the action). Finally we post-process the predictions from the
network using non-maximal supression (NMS), which is applied independently
for each class. We keep the top-scoring 300 class-specific boxes (note that the
same box may be repeated with multiple different classes in this final list) and
drop the rest.

3 Experiments

We trained the model on the training set using a synchronized distributed setting
with 11 V100 GPUs. We used batches of 3 videos with 64 frames each, and
augmented the data with left-right flipping and spatial cropping. We trained
the model for 500k steps using SGD with momentum and cosine learning rate
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annealing. Before submitting to the challenge evaluation server, we finetuned the
model further on the union of the train and validation sets. We tried both freezing
batch norm layers and finetuning them with little difference in performance.

Results of our model on the validation set are compared with resuts from the
models in the AVA paper in table 1. The RGB-only baseline [2] used the same I3D
feature extractor that we used but pretrained on ImageNet then Kinetics-400,
whereas our model was just pretrained on the larger Kinetics-600. This baseline
differs from ours in a few other ways: 1) it used a ResNet-50 for computing
proposals and I3D for computing features for the classification stage, whereas
we only use the same I3D features for both things; 2) our model preserves the
spatiotemporal nature of the I3D features all the way to the final classification
layer, whereas theirs performs global average pooling in time of the I3D features
right after ROI-pooling; 3) we opted for action-independent proposal boxes.

The RGB+Flow baseline is similar but also uses flow inputs and a Flow-I3D
model, also pretrained on Kinetics-400. The ResNet-101 baseline corresponds
to a traditional Faster-RCNN object detector system applied to human action
classes instead of objects, using just a single frame as input to the model.

Our model achieves a significant improvement of nearly 40% over the best
baseline (RGB+Flow), while using just RGB and just one pretrained model
instead 3 separate ones. The results suggest that simplicity, coupled with a large
pre-training dataset for action recognition, are helpful for action detection. This
is reasonable considering that many AVA categories have very few examples, and
so overfitting is a serious problem.

4 Conclusion

We have presented an action localization model that aims to densely classify the
actions of multiple people in video using the Faster-RCNN framework with spa-
tiotemporal features from an I3D model pretrained on the Kinetics-600 dataset.
We show a large improvement over the state-of-the-art on the AVA dataset,
but at 21.6% AP, performance is still far from what would be practical for ap-
plications. More work remains to be done to understand what are the current
modelling problems and how to fix them. In the meanwhile, continuing to grow
datasets such as Kinetics should help.

Table 1. Validation set results.

Proposed model RGB+Flow [2] RGB-only [2] ResNet-based model [8]

21.6 15.6 14.5 11.3



4 Carreira, Doersch, Girdhar & Zisserman

References

1. Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.: Hol-
lywood in homes: Crowdsourcing data collection for activity understanding. In:
Proceedings of the European Conference on Computer Vision (ECCV). (2016)

2. Gu, C., Sun, C., Ross, D.A., Vondrick, C., Pantofaru, C., Li, Y., Vijayanarasimhan,
S., Toderici, G., Ricco, S., Sukthankar, R., Schmid, C., Malik, J.: Ava: A video
dataset of spatio-temporally localized atomic visual actions. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2018)

3. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision (IJCV) 115(3) (2015)
211–252

4. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S.,
Viola, F., Green, T., Back, T., Natsev, P., et al.: The kinetics human action video
dataset. arXiv preprint arXiv:1705.06950 (2017)

5. : The kinetics-600 human action video dataset. http://https://deepmind.com/

research/open-source/open-source-datasets/kinetics/ Accessed: 2018-06-10.
6. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the

kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (2017)

7. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems (NIPS). (2015)

8. : Ava v2.1 faster rcnn resnet-101 baseline. https://research.google.com/ava/

download.html Accessed: 2018-06-10.



Two-Stream baseline for AVA dataset: challenge 2018

Gurkirt Singh Fabio Cuzzolin
Oxford Brookes University

gurkirt.singh-2015@brookes.ac.uk

Abstract

In this work, we present a two-stream spatial action de-
tection approach based on a previous state-of-the-art ap-
proach to spatial-temporal action detection. We present a
two-stream baseline for AVA dataset based on [9]. Our
aim is to find out how well a 2D pipeline can perform on
AVA and reproduce results presented in [3]. We submitted
this approach to ActvityNet challenge 2018 for Task AVA#1
and AVA#2.

1. Methodology
Our approach is based on the work of Singh et al. [9],

because of its simplicity. There are few changes from
Singh et al. [9]. Firstly, we replace VGG [6] as base net-
work with Resnet101 [4] as a base network. Secondly, we
adopt single-stage object detection approach based on fea-
ture pyramid network(FPN) [7] rather than SSD [8]. Lastly,
we link detections in time by following the online linking
approach described in [9], except temporal labelling. We
encourage the reader to read the original paper [9] for more
details about the pipeline.

1.1. Inputs

Appearance stream takes 3 channel 600× 600 rgb frame
as input. Motion stream takes 5 optical frames [1] as input,
resulting in a 5x3 channel optical flow image, with flowx

and flowy being channels and the third channel is the mag-
nitude of flowx and flowy .

1.2. Resnet101

We use Resnet101 [4] as base network with FPN [7] in
[9] pipeline.

1.3. Pre-training on Kinetics Dataset

We trained a Resnet101 model on Kinetics-600 [5] for
frame classification task up to 100K iterations. We use this
model to start the training on AVA dataset for both flow and
appearance stream.

1.4. Loss function

We use standard L1-loss formulation [2] for bounding
box regrerssion units. For classification units, we tried
binary cross entropy loss with sigmoid activation without
much success, so, we switched to softmax loss with online-
negative-hard-minging strategy explained in [8]. basically,
the loss function is identical to the one described in [8].

1.5. Class Balance

We found that balance across classes is important to
achieve given results in this work. We sampled at least 2000
frames for each class and maximum up to 4000 frames per
classes. This provides the stabilisation during training and
leads to improvements to 5% in final results on the valida-
tion set.

1.6. Temporally Consistent Spatial Detection

We link detections in time by following the online link-
ing approach described in [9], resulting in an arbitrary
number of bounding boxes linked together called action-
paths. To generate action-paths, we link detections from
6 frames per second. For evaluation, we need to generate
frame-level detections at the rate of one frame per seconds
on given timestamps. The detections on every central frame
are gathered from action-paths after action-path scores are
smoothed with 10 frame sliding window.

2. Experimental Results
We report results for two settings in table 1 for AVA

dataset used in ActvityNet challenge 2018 for Task AVA#1
and AVA#2 at intersection-over-union threshold (IOU δ) of
0.5.

Method Train-Sets Test-Set Inputs δ = 0.5
Gu et al. [3] Train Val 40-RGB+40-Flow 15.6%
Ours Train Val 1-RGB 14.2%
Ours Train+Val Test 1-RGB+5-Flow –%

Table 1: Activity detection performance on validation and
testing set. Quantity δ is the spatial Intersection over Union
(IoU) threshold.

1
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ABSTRACT 

In this paper, we present a solution to Moments in Time (MIT) [1] 

Challenge. Current methods for trimmed video recognition often 

utilize inflated 3D (I3D) [2] to capture spatial-temporal features. 

First, we explore off-the-shelf structures like non-local [3], I3D, 

TRN [4] and their variants. After a plenty of experiments, we find 

that for MIT, a strong 2D convolution backbone following 

temporal relation network performs better than I3D network. We 

then add attention module based on TRN to learn a weight for 

each relation so that the model can capture the important moment 

better. We also design uniform sampling over videos and relation 

restriction policy to further enhance testing performance. 

1 INTRODUCTION 

Video understanding is a challenging task in computer vision and 

has significant attention during these years with more and more 

large-scale video datasets. Compared with image classification, 

video classification needs to model temporal information and 

more modalities can be extracted in videos like acoustic, motion, 

ASR etc. Multi-modalities are mutual complement to each other 

in many cases.  

The recent challenge “Moments in Time Challenge” provides a 

platform to explore new approaches for short video understanding. 

The dataset has 339 categories which cover dynamic events 

unfolding within three seconds. The training/validation/test set has 

802264/33900/67800 trimmed videos respectively. The evaluation 

metric is the average of top1 and top5 accuracy. The organizers 

provide raw videos and a preprocessed version which normalize 

videos to resolution 256x256 at 30fps. Participants are allowed to 

utilize any modality. 

2 APPROACH 

2.1 Modality Preparation 

2.1.1 Visual image preprocessing.   

We use preprocessed videos officially provided with resolution 

256x256 and 30fps. We extract frames to jpeg format with best 

quality by using FFmpeg. After checking hundreds of videos, we 

found a lot of videos have vertical/horizontal black borders like 

movie style. We remove the black borders by some OpenCV tool 

and rescale it back to the resolution 256x256. We train/test 

models by using videos with and without black borders 

respectively.  

2.1.2 Motion Features.  

We use traditional TVL1 features which is implemented in 

OpenCV. It costs 2 weeks to extract motion features for all the 

MIT video data in a 2 gpu (M40) machine. Horizontal and vertical 

components are saved as gray image files and we concatenate 

them to an image with 2 channels during training.  

2.1.3  Acoustic Features.   

Audio contains a lot of information that helps to classify videos. 

We extract audio feature by a VGG like acoustic model trained on 

AudioSet [5] which consists of 632 audio event classes and over 2 

million labeled 10-second sound clips. The process is the same as 

that in Youtube-8M, Google has released the extraction code in 

tensorflow model github.  

2.2 Network Architecture 

In this section, we describe all the networks involved.  

2.2.1 NetVLAD aggregation with acoustic feature.  

Acoustic feature pre-trained on AudioSet for each video has a 

dimension of 3x128. We use NetVLAD as that in [6] to aggregate 

acoustic features through time. It learns VLAD encoding followed 

by fully connect, mixture of experts and context gating.  

2.2.2 Non local network.  

We use off-the-shelf non local network, and train it with settings 

of both 32 and 64 sampled frames. The implementation of non-

local network decodes video file during training, so we only do 

experiments on RGB modality.     

2.2.3 Inflated 3d model.  

I3D and its variant has achieved state of the art performance on 

datasets like kinetics. It’s natural to apply it here in MIT dataset. 

We use two backbones. One is the origin Inception-V1 pre-trained 

on kinetics. The other backbone is Inception-V3 inflated ourselves. 

We inflate the convolution kernel of size 3x3, 5x5, 3x1, 1x3, 7x1, 

1x7 into 3x3x3, 3x5x5, 3x3x1, 3x1x3, 3x7x1 and 3x1x7. We drop 

every other frames, the input video data dimension is 45x224x224. 

The spatial size is randomly cropped from a scaled video whose 

shorter side is randomly sampled in [240, 256]. We also randomly 

flip the whole video horizontally as an augmentation. We use 8 

P100 cards to train this model, the batch size is 32. In testing, we 

use multi-crops (4 corners and center crop together with 

horizontal flipping) and average to get the final score.  

2.2.4 Temporal Relation Network.  

TRN achieves advanced performance on three video datasets, 

Something-Something, Jester, and Charades. These datasets all 

depends on temporal relational reasoning and MIT has similar 

character. We employ InceptionV3, InceptionResnetV2 and 

SENet-154 [7] as backbones for MultiScale TRN and build 

attention module based on squeeze & excitation module to learn 

the weighted relations leveraging the global relation distribution 

instead of simply accumulating them. In testing, we uniformly 

sample frames over whole video and utilize multi-crops. Also, we 

analyze the impact of different relations and select them explicitly. 

We find the following restriction will improve the performance 
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slightly. In 2-frames relation, the minimum relation sampling 

distance should be 2. In 3-frames relation, the distance should be 

in range [2, 3]. In 4-frames relation, the distance should be in 

range [2, 4]. 

We also try to combine I3D and TRN together. First, we split the 

video frames into 5 segments, each segment has 18 frames. Then, 

we apply 3D convolution model to each segment and will get a 

representation vector. Finally, TRN builds the relationship 

between the 5 segments. We apply this model to both RGB and 

Flow with Inception-V1 backbone, and we rescale the input 

resolution to 184x184 to reduce the complexity. The batch size is 

64.  

2.3 Ensemble 

We use class-wise weighted ensemble. We calculate average 

precisions for each model and then normalize the weight for each 

class through models. After this operation, the ensemble model 

will take the different ability for each single model on each class 

into consideration. For example, when dealing with “clapping”, 

acoustic model will have a predominant weight. In the final 

submission, we ensemble 13 models and the result is showed in 

next section. 

3 EXPERIMENT 

3.1 Experiment Results 

We test on 3 modalities with different models. The input 

resolution is 224x224 except the case in I3D (184x184). We use 

multi-crop testing in all cases.  Details are listed in Table 1.  

We notice that in MIT dataset, 2D convolution following temporal 

relations works better than 3D convolution networks including 

I3D, non-local network and their variants. In temporal relation 

testing, uniform sampling policy over the whole videos works 

well. We use 8 segments here (90 frames) and average the score 

of 11 uniformly sampled clips. With the test enhancement, the 

baseline performance greatly improves from 28.61/54.65 to 

29.67/55.74. The backbone is also of great importance, we 

compare InceptionV3, Inception Resnet V2, and SENet-154. 

SENet-154 is the best backbone in cost of high complexity and 

long training time. We spend 6 days to train SENet-154 TRN 

model. Actually, we also try Nasnet but fail to get a good result 

due to small batch size (only 8). Attentional TRN and restricting 

distance between consecutive sampled relations also help which 

means that more effective relations are selected. . The best single 

RGB model (32.21/59.05) is attentional temporal relation network 

with backbone senet154, and test using uniform sampling, multi-

crop and manually restricted relation policy. Our acoustic model 

using AudioSet pre-trained features following netVLAD 

aggregation layer is better than baseline SoundNet metric. The 

final class-wise weighted ensemble consists of 13 models listed in 

the table which achieves top1/top5 (%) 36.23/64.56 on validation 

set. Since the ensemble weights depend on validation set, it makes 

more sense to check it on test set. We verify it on test server and 

find the weighted ensemble is better than average ensemble by a 

considerable margin about 0.2. 

Table 1: Experimental results on Validation Set (model with * is 

used in ensemble. Test enhancement means uniform sampling and 

multi-crop. ATRN is attentional temporal relation network) 

Models  Modality Backbone Top1/Top5 

Non-local 32 frames * RGB Resnet50 27.04/54.02 

Non-local 64 frames RGB Resnet50 26.44/53.11 

I3D * RGB InceptionV3 27.62/53.89 

I3D + TRN * RGB InceptionV1 28.25/54.83 

I3D + TRN * Flow InceptionV1 18.00/39.17 

TRN without test 

enhancement 
RGB InceptionV3 28.61/54.65 

TRN without test 

enhancement, with 

relation restricted 

RGB InceptionV3 28.82/54.72 

TRN * RGB InceptionV3 29.67/55.74 

TRN black borders 

removed * 
RGB InceptionV3 29.59/55.86 

TRN Flow InceptionV3 16.55/37.04 

TRN * RGB InResnetV2 29.33/56.57 

TRN (without test 

enhancement) 
RGB SENet-154 31.10/58.08 

TRN RGB SENet-154 31.89/58.82 

ATRN * RGB SENet-154 32.09/58.91 

ATRN black borders 

removed * 
RGB SENet-154 31.97/59.26 

ATRN relation restricted * RGB SENet-154 32.21/59.05 

ATRN 512 dim bottleneck RGB SENet-154 31.63/58.92 

ATRN vertical flipped 

input * 
RGB SENet-154 31.32/58.84 

ATRN Flow SENet-154 17.92/39.60 

netVLAD 64clusters * Audio VGG 9.00/19.51 

netVLAD 128clusters * Audio VGG 8.90/20.23 

13 models ensemble None None 36.23/64.56 

 

4 CONCLUSIONS 

In summary, we have tried off-the-shelf models for video 

recognition. To our surprise, temporal relation on top of 2d 

convolution works better than inflated 3d models in Moments in 

Time. It may be the case that MIT dataset is more complicated 

than traditional trimmed activity datasets like kinetics in terms of 

1) Events are not limited to human related, more objects and 

scenes are involved, deep 2d convolution networks have stronger 

representation ability. 2) Big inner-class difference, for example, 

“fencing” has two totally different meanings which makes it 

harder to train 3d models.  Furthermore, based on TRN, we add 
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attention module on relations, try stronger backbone and design 

effective uniform sampling test which greatly improves the 

performance. 
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Abstract 
In this paper, a brief description is provided of the method used for the task of trimmed event 
recognition (Moments in Time). A set of TRN models were used to train video classification 
models for the 200 action categories of the Moment in Time Mini Database，and the P3D 
feature is also used to further enhance the model diversity, finally we propose a simple yet 
effective method to combine different modalities together for action prediction. 
 
1. Introduction 
The Moments in Time Dataset [1], is a large-scale human-annotated collection of one million 
short videos corresponding to dynamic events unfolding within three seconds, each video is 
tagged with one action or activity label. Modeling the spatial-audio-temporal dynamics even 
for actions occurring in 3 second videos poses many challenges: meaningful events do not 
include only people, but also objects, animals, and natural phenomena; visual and auditory 
events can be symmetrical or not in time. Here, with limited computation resources, we will 
use the Moments in Time Mini dataset, which is a subset of Moments in Time with 100k videos 
provided in the training set and involves 200 action categories, for model training and action 
prediction. As we note the temporal relational reasoning is very important for this task [2], we 
train a set of Temporal Relation Network (TRN) models firstly, also the recently proposed P3D 
method [3] is found useful to enhance the model diversity, finally we propose a simple yet 
effective method to combine those methods above to identify the event labels depicted in a 
3 second video. 
 
2.Method Description 
2.1 TRN 
Temporal relational reasoning is critical for activity recognition, forming the building blocks 
for describing the steps of an event. A single activity can consist of several temporal relations 
at both short-term and long-term timescales, the ability to model such relations is very 
important for activity recognition. The Temporal Relation Network (TRN) proposed by Bolei 
Zhou et al [2] is designed to learn and reason about temporal dependencies between video 
frames at multiple time scales. It is an effective and interpretable network which is able to 
learn intuitive and interpretable visual common sense knowledge in videos. The networks 
used for extracting image features is very important for visual recognition tasks, here we use 
an 8 segment multi-scale TRN with an inceptionV3 base and Inception with Batch 
Normalization (BN-Inception) base separately, and then train the TRN-equipped network 
with different data augmentation scheme with each base network, we found training a set of 
TRN networks with fusing them together bring action prediction improvement. 



 
2.2 P3D 
Pseudo-3D Residual Net (P3D ResNet) architecture proposed by Qiu, Zhaofan et al [3], aims 
to learn spatio-temporal video representation in deep networks, it simplifies 3D convolutions 
with 2D filters on spatial dimension plus 1D temporal connections. Experiments on five 
datasets in the context of video action recognition, action similarity and scene recognition 
also demonstrate the effectiveness and generalization of spatio-temporal video 
representation produced by P3D ResNet. Here, to enhance our model diversity, we adopted 
P3D ResNet to learn feature representation of the Moments in Time Mini Dataset, and utilized 
the learned features for this video classification task. 
 
2.3 Weak classifiers 
In this part, we use the idea of AdaBoost[4] to generate our own classifier. First, we rank the 
200 classes according to their accuracy on the validation dataset. Then, we choose 50 classes 
with the lowest accuracy and increase their sample weight for future training. What is more, 
we calculate all the training data and get the confusion matrix of the 200 classes, for those 
confusing categories, we trained weak classifiers to classify them especially. For all the training 
samples which was classified wrong before, their weight will be also increased for another 
weak classifier. By this method, we achieved improvement on the accuracy of testing data.  
 
2.4 Ensemble 
We propose a simple yet effective model ensemble method to enhance the action prediction 
ability of our final classification model. Firstly, we will calculate the classification accuracy of 
each model referred above on the validation dataset, then we assign a weight to each model 
according to its classification accuracy, model with high accuracy embracing a higher weight. 
Given a test video, we firstly predict its top 5 labels with each model. We will give a label 
weight to a predicted label according to its number of occurrences across models. For one 
model, we will multiply confidence score of each predicted label with the model weight 
referred above, and then add up the resulting value of the same predicted label across models 
with its label weight. Finally, we will rank the predicted labels according to their label scores 
above in descending order and get the top 5 labels for action prediction of the test video. 
Our experimental results below will show the effectiveness of our method. 
 
3.Experimental Results 
The Moments in Time Mini Dataset contains 100000 training videos, 10000 validation videos 
and 20000 testing videos. Each video is in one of 200 categories. Table 1 summarizes our 
results on the Moments in Time Mini validation dataset. 
 

Model Top-1 Accuracy (%) Top-5 Accuracy (%) 

TRN 26.1% 48.5% 

P3D 14.7% 33.4% 

Weak classifier  28.3% 52.2% 

TRN+P3D+ Weak classifier 31.7% 56,9% 

Table 1. Moments in Time Mini validation results. 



 
4.Conclusion 
The recently proposed TRN method is effective for recognizing daily activities with learning 
intuitive and interpretable visual common sense knowledge in videos. Also, the P3D feature 
is used to enhance model diversity. We utilize those methods and propose a simple yet 
effective method to combine different modalities together for action prediction of the 
Moment in Time Mini Dataset, our experimental results show its effectiveness. 
 
5.Acknowledgement 
This work was finished during an internship work in IQIYI，many thanks to Jie Liu, Tao Wang，
and Xiaoning Liu for helpful comments and discussion. 
 
References 

[1] Monfort, Mathew, et al. "Moments in Time Dataset: one million videos for event 
understanding." arXiv preprint arXiv:1801.03150 (2018). 
[2] Zhou, Bolei, Alex Andonian, and Antonio Torralba. "Temporal Relational Reasoning in 
Videos." arXiv preprint arXiv:1711.08496 (2017). 
[3] Qiu, Zhaofan, Ting Yao, and Tao Mei. "Learning spatio-temporal representation with pseudo-
3d residual networks." 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 
2017. 
[4] Freund, Yoav, and Robert E. Schapire. "A decision-theoretic generalization of on-line 
learning and an application to boosting." Journal of computer and system sciences 55.1 (1997): 
119-139. 
 
 



CMU-AML Submission to Moments in Time Challenge 2018

Po Yao Huang
School of Computer Science
Carnegie Mellon University
poyaoh@andrew.cmu.edu

Xiaojun Chang
SCS, Carnegie Mellon University

Hangzhou Anmeilong Intelligence Co., Ltd.
cxj273@gmail.com

Alexander G. Hauptmann
School of Computer Science
Carnegie Melon University

alex@cs.cmu.edu

Abstract

In this report, we describe our solution for Moments in
Time Challenge 2018. We employed both visual and audio
features in the submission. For visual features, we utilize
the preprocessed RGB and optical flow data for training or
fine-tuning 2D (e.g. Temporal Segment Network (TSN) and
3D (e.g. Inflated 3D ConvNets (I3D). For audio features, we
use raw waveforms as the input modality and fine-tune the
feature extracted from the last pooling layer of SoundNet.
We achieve 31.56% in terms of Top-1 accuracy and 59.75%
in terms of Top-5 accuracy on the validation set.

1. Introduction

The last decodes have witnessed the success of deep
learning in image understanding tasks, i.e. classification [8],
segmentation [11], and etc. Researchers have demonstrated
the superiority of state-of-the-art Convolutional Neural Net-
works (CNN) [9, 3] against traditional algorithms with
hand-crafted features. Inspired by the progress, CNNs have
been widely employed to improve the performance of video
understanding tasks. Compared to image understanding
tasks, temporal information of videos can boost the perfor-
mance of video classification. Additionally, auditory sound-
tracks provides an additional clue for video analysis.

We cannot obtain discriminate models without large-
scale labeled dataset, such as ImageNet [2] and ActivityNet
[4]. Recently, the MIT-IBM Watson AI Lab has released
a large-scale Moments dataset [7] to help AI systems rec-
ognize and understand actions and events in videos. This
dataset contains a collection of one million labeled 3 sec-

ond videos, involving people, animals, objects or natural
phenomena, that capture the gist of a dynamic scene. The
Moments in Time Challenge 2018 is based on this dataset.

2. Our Approach
In this section, we describe the features and models we

used for the challenge. We use the standard split defined in
the original paper where 802,244 training video and 37,800
validation video are available.

2.1. Features

Visual Features: All the videos are first resized to
340×256 under 30 fps. We rescale raw RGB values into[
− 1, 1

]
. We also computed optical flow with the TVL1

algorithm and rescale the value into
[
− 1, 1

]
.

We utilize the preprocessed RGB and optical flow data
for training or fine-tuning 2D(e.g. TSN) and 3D(e.g. I3D
[1]) models. In order to fit the relatively shorter but constant
period for the targeted Moments in Time dataset, we use
dilated frames (with a fixed M network input size with step
size bN/(M − 1)c, where N is the frame size) as inputs
instead of consecutive frames.

To leverage the knowledge from other dataset, we also
use existing models pre-trained on external large datasets
such as Kinetics. In practice, we use the RGB and Opti-
cal flow models pre-trained on ImageNet and as the feature
extractors to extract the features reside in last pooling layer
as new video representation. Specifically, we sample the
center frames of a video as the input and store a (7, 1024)
vector for each video. This approach is equivalent to fine-
tuning the layer above last pooling layer of a model.

Audio Features: We average the two channels and re-
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sample the audio into 22,050 Hz .wav files. For videos
without audio channel, we fill a 3-second silent audio for
them. We extract the conv7 layer of the soundnet model,
which is pretrained over 2,000,000 unlabeled videos. Then
we feed the features into a 10-layer DenseNet [5] with the
output layer changed to predict moment categories.

2.2. Models

Fine-tune all models For this challenge, we fine-tune
2D(spatial) and 3D(spatial-temporal) models with addi-
tional layers.

For 2D models, built upon TSN, we add an additional
cutout layer. Each sampled (340 × 256) frame will be ran-
domly cut out with a (90 × 90) region. We also tried other
augmentation techniques such as mix-up but found cut-out
is the most feasible one.

For 3D models, we use I3D models with ResNet 50
(R50) as its backbone. In addition to cutout augmentation
layer we add an addition non-local layer to capture the in-
teraction between spatial-temporal units. As in [10], we
add 10 non-local blocks to R50.

Considering the size of the target dataset, we choose to
use network with 8 frame inputs. Empirically we found that
ImageNet pre-trained I3D model with non-local networks
are prone to overfit for Moment in time dataset in com-
parison to 3D models without non-local networks. A bet-
ter choice is to use ImageNet-Kinetics pre-trained models
where we observed preferred behaviors.

Fine-tune last models As described before, we uti-
lize the ImageNet-Kinectics pre-trained I3D models as the
spatial-temporal feature extractor. Take (7,1024) features as
the input, we randomly sample and average 2 frames then
feed to the classification network.

For the classification, we choose the mixture-of-residual
expert (MoRE) network as proposed in[6] with 4 experts
with two-layer network (each layer with 2048 neurons) with
residual links as the classification model for RGB and opti-
cal flow features. We found that with pre-extracted feature
the network are prone to overfit and therefore apply a high
dropout rate (0.8) and append an input batch-normalization
later to train the model.

2.3. Training and Inference Details

For training finetune-all models, we use 3-Titan XP
GPUs with batch size 24 and standard momentum SGD.
With limited resource and time we train each 3D models for
20 epochs. The learning rate is set 0.005 and decayed by
0.1 at 10, 16, 18 epochs respectively. It take roughly 4 days
to train a model. For inferencing, we sample 5 inputs (each
with 8 frams) from a video then mean-pool the predictions
as the video-level prediction.

Training finetune-last models are comparably cost-
effective. We use one Titan XP GPU with batch size 512

and Adam optimizer and train for 80 epochs. The learning
rate is set 0.001 and decayed by 0.1 at 30, 50, 70 epochs. At
testing phase, we loop every frame of a video and generate
frame-wise prediction then mean-pool the results.

2.4. Evaluation metric

Following the stand of the Moments challenge, we em-
ploy top-k accuracy as the evaluation metric. For each
video, the system will generate k labels lj , j = 1 . . . k. The
ground truth label for the video is g. The error of the algo-
rithm for that video would be:

e = min
j

d(lj , g), (1)

where d(x, y) = 0 if x = y and 1 otherwise. The over-
all error score for an algorithm is the average error over all
videos. We use k = 1 and k = 5.

2.5. Fusion

In this report, we fuse multiple features for video classi-
fication. We learn the optimal weights for different features
on the validation set. Then we apply these weights on the
testing set, and get the results for the final submission.

3. Results
In this section, we first evaluate the performance of the

individual feature on the validation set. The performance
are shown in Table 1. From the experimental results we can
observe that I3D with non-local network have better per-
formance than I3D without non-local network. For exam-
ple, the performance of I3D with NLN improves the perfor-
mance of I3D without NLN from 28.96 to 29.48 in terms of
top-1 accuracy. However, we observe that I3D with NLN is
prone to overfit. For example, when we use the ImageNet
pretrained I3D with NLN, we get only 25.94 in terms of
top-1 accuracy. This demonstrates the necessity of using
ImageNet and Kinects pre-trained network to avoid overfit-
ting.

After that, we learn the optimal weights for individual
features on the validation set. The weights of utilized fea-
tures are shown in Table 2. With these weights, we have ob-
tained 31.56 in terms of Top-1 accuracy and 59.75 in terms
of Top-5 accuracy on the validation set, respectively.

4. Conclusion
In this report, we have presented our solution to the Mo-

ments in Time Challenge 2018. We found that Inflated
3D ConvNets (I3D) with non-local networks has the best
single model performance. However, we found that Ima-
geNet pre-trained I3D model with non-local networks are
prone to overfit for the challenge dataset. Hence, we choose
to use ImageNet-Kinects pretrained models where we ob-
served preferred performances.



Table 1. Performance evaluation of different features on the validation set.

Type Model Pre-Trained val Top-1 val Top-5 Final Fusion

TSN-Spatial Baseline I+K 24.07 48.98 T
TRN-Multiscale Baseline I+K 21.02 43.27 T

Audio SoundNet U 6.83 15.41 T

2D-RGB Last-RGB I+K 19.84 41.75 T
2D-OF Last-Optical Flow I+K 18.49 39.64 T

3D-RGB All-vanilla-I3D (8 frames) I 28.12 56.04 F
3D-RGB All-I3D (8 frames) I 28.96 56.45 T
3D-RGB All-I3D-NLN (8 frames) I 25.94 52.60 F
3D-RGB All-I3D-NLN (8 frames) I+K 25.75 53.31 F
3D-RGB All-I3D-NLN (16 frames) I+K 29.48 57.37 T

Table 2. Weights of different features and the fusion results on the
validation set.

Type Model Weights

TSN-Spatial Baseline 2
TRN-Multiscale Baseline 2

Audio SoundNet 1

2D-RGB Last-RGB 2
2D-OF Last-Optical Flow 1

3D-RGB All-I3D (8 frames) 8
3D-RGB All-I3D-NLN (8 frames) 3
3D-RGB All-I3D-NLN (16 frames) 12

Fusion Result Top-1: 31.56 Top-5: 59.75
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Abstract
Video-based action recognition is challenging
as spatial and temporal reasonings are involved
jointly. We propose a novel multi-view convolu-
tional architecture, which performs 2D convolution
along three orthogonal views of volumetric video
data. With weight sharing, it is capable of en-
coding spatio-temporal feature of video clips ef-
ficiently, and achieves superior performance over
state-of-the-art spatio-temporal feature learning ar-
chitectures. Furthermore, we also explore the au-
ditory modality, which is complementary to visual
clues. Our final submission to the Moments in Time
challenge 2018 is an ensemble of several visual
RGB and audio models, achieving a top-1 accuracy
of 38.7% and top-5 66.9% on the validation set.

1 Introduction
The task of video-based action recognition requires proper
modelling of both visual appearance and motion pattern. Re-
cently, a significant effort has been devoted to spatio-temporal
feature learning from video clips. Since the success of convo-
lutional neural networks (CNN) in 2D image recognition [1],
3D convolution is a natural adaption for volumetric video
data [2]. However, in C3D [2], significantly more (e.g. 2×)
parameters than its 2D counterpart are introduced, which
makes the model difficult to train and prone to overfitting.
This issue is particularly critical when the training data size
is limited. P3D [3] and (2+1)D [4] attempted to address the
issue by decomposing a 3D convolution into a 2D convolu-
tion along the spatial dimension and a 1D convolution along
the temporal dimension. We argue that the “unequal” treat-
ment of spatial and temporal features is undesirable. On the
contrary, we propose Multi-View CNN (MV-CNN), which
performs feature extraction along the spatial and temporal di-
mensions in a consistent way. The details of MV-CNN are
described in Section 2.1. To further improve the overall accu-
racy, we train non-local networks [5] for model ensemble.

2 Method
In this work, we explore multiple modalities for categorizing
the action occurring in a video. Our visual RGB model is

3 × 3 × 3

1 × 3 × 3

3 × 1 × 1

1 × 3 × 3 3 × 1 × 3 3 × 3 × 1

+

share parameters

(a) (b) (c)

𝛼1

𝛼2

𝛼3

Figure 1: Comparison of MV-CNN to common spatio-temporal fea-
ture learning architectures. (a) C3D. (b) (1+2)D. (c) the proposed
MV-CNN.

based on an ensemble of the proposed MV-CNN and other
state-of-the-art spatio-temporal feature learning models. We
also tried optical flow, but found that it do not contribute to
the final accuracy after ensemble. However, we do exploit
audio-based action recognition, which is complementary to
visual signal.

2.1 Multi-View CNN
A video clip can be represented as a 3D array of dimension
T ×H×W , where T , H and W are number of frames, frame
height and frame width respectively. Taking kernel size of 3
as an example, Figure 1 compares the proposed MV-CNN to
common convolutional architectures. In C3D, a 3D 3× 3× 3
convolution is utilized to extract spatial (H and W ) and tem-
poral (T ) features jointly. In the (1+2)D configuration, a 1D
3 × 1 × 1 convolution is utilized to aggregate temporal fea-
ture, followed by a 2D 1× 3× 3 convolution for spatial fea-
ture. While in the proposed MV-CNN, we perform 2D 3× 3
convolutions along three views of the T ×H ×W volumet-
ric data, i.e. T × H , T × W and H × W separately. The
three orthogonal views are conceptually similar to the three
anatomical planes of human body, namely sagittal, coronal
and transverse. Notably, the parameters of the three-view
convolutions are shared, such that the number of parameters
is kept the same as single-view 2D convolution. The three
resulting feature maps are further aggregated with weighted
average. The weights are also learned during training in an
end-to-end manner. To facilitate training, we initialize the 2D
convolutional kernels with a ImageNet [6] pretrained model.

For each model, to obtain better generalization on the test



set, the Stochastic Weight Averaging (SWA) scheme [7] is
adopted. Several model variants of the same network are
trained with cycle learning rate and subsequently form an en-
semble.

2.2 Auditory Modality
Complementary to visual signal, sound conveys important in-
formation for action recognition. Therefore, in our method,
audio streams extracted from videos are exploited for the
task of action categorization. In audio processing, log-mel
spectrum is a powerful hand-tuned feature, exhibiting local-
ity in both time and frequency domains [8]. In ResNet-
34 [9], the 2D log-mel feature is cast into an image, and a
34-layer ResNet is applied for audio classification. While
M34-res [10] and EnvNet [11] attempted to learn semantic
feature from the 1D raw audio waveforms in an end-to-end
way. We train the three state-of-the-art models on the Mo-
ments in Time dataset. Notably, we adapt EnvNet [11] with
residual connections, and henceforth refer to the variant as
EnvNet+ResNet.

3 Experiments
The Moments in Time dataset [12] contains 802245 training
videos and 39900 validation videos. Excluding the videos
without audio track, the auditory dataset contains 450k train-
ing segments and 20k validation segments. In total 339 action
categories are annotated. In all experiments, our models are
trained on the provided Moments in Time training data only.
Apart from ImageNet, no other video datasets are used for
pretraining.

For the visual RGB model, during training, we select 64
continuous frames from a video and then sample 8 frames
by dropping the 7 frames in between. The spatial size is
224 × 224 pixels, randomly cropped from a scaled video
whose shorter side is randomly sampled between 256 and 320
pixels. During inference, following [5] we perform spatially
fully convolutional inference on videos whose shorter side is
rescaled to 256 pixels. While for the temporal domain, we
sample 6 clips evenly from a full-length video and compute
softmax scores on them individually. The final prediction is
the averaged softmax scores of all clips.

In this work, we use ResNet-101 [13], Inception-v4 and
Inception-ResNet-v2 [14] as the backbone models, which are
pretrained on ImageNet. The proposed MV-CNN along with
C3D and non-local (NL) models are trained to form an en-
semble. The top-1 and top-5 accuracies of individual models
as well as their ensemble are shown in Table 1. For Inception-
ResNet-v2, MV-CNN obtains 35.6% top-1 and 63.6% top-5
accuracy, leading to 0.5% and 0.3% accuracy gain compared
with the C3D baseline. It is worth noting that with MV-CNN,
more significant performance gain can be obtained on smaller
sized datasets like UCF-101 [15]. On large-scale datasets like
Moments in Time, the performance gain saturates, which is
reasonable as increasing data size could be more effective
than algorithmic innovations. With an ensemble of visual
RGB models alone, we achieve a top-1 accuracy of 37.7%
and top-5 65.9%.

For the training of audio models, all the sound data are
downsampled to a frequency of 16kHz. For M34-res, we train

Table 1: Accuracy on the validation set of the Momements in Time
dataset. Performances of both individual visual and audio models
and their ensemble are shown.

Model Modality
Accuracy (%)
top1 top5

ResNet-101-C3D RGB 33.6 61.2
ResNet-101-NL RGB 32.8 60.8

Inception-v4-C3D RGB 34.3 62.0
Inception-ResNet-v2-C3D RGB 35.1 63.3
Inception-ResNet-v2-NL RGB 34.8 63.3
Inception-ResNet-v2-MV RGB 35.6 63.6

Ensemble RGB 37.7 65.9
ResNet-34 Audio 13.8 23.6
M34-res Audio 14.8 27.4

EnvNet+ResNet Audio 13.2 25.9
Ensemble Audio 17.6 31.1
Ensemble RGB+Audio 38.7 66.9

two models for audio section lengths of 1s and 3s separately.
Then their scores are averaged. This multi-scale training
and inference scheme improves the robustness against audio
length. The performances of the three audio models are sum-
marized in Table 1. With an ensemble of audio models alone,
we obtain 17.6% top-1 and 31.1% top-5 accuracy. With an
ensemble of visual RGB and audio models, we achieve a top-
1 accuracy of 38.7% and top-5 66.9%.

4 Conclusions
In our submission to the Moments in Time challenge 2018,
we explore multiple modalities for the task of video-based
action recognition. Particularly, we propose a novel multi-
view convolutional architecture, which achieves superior per-
formance over the C3D baseline with significantly less num-
ber of parameters. A more thorough and systematic evalua-
tion of the architecture is left for future work.
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Method Summary

Team Name: HERO AN

Inspired by the effectiveness of sparse sample, we combine the advantages of TRN and
TSN to discriminate the action in this action challenge. Specifically, TRN has the ability of
reasoning the temporal relation of video frames. However, the sparse sample strategy used
in TRN would discard essential motion information if it samples in major interval or minor
interval coincidentally. Besides, due to the high computation complexity, the efficiency would
degrade dramatically. For TSN, although it achieves desirable performance, it just averages the
predictions of three segments, without the reasoning ability. Different from TRN, TSN could
capture frame information at every segments.

Based on above analyses, we propose a comprehensive sparse sample strategy. We divide
video frames into four segments averagely. Then, we randomly sample four frames in each
segment, which means we get 16 frames from a video. The resulted 16 frames are fed into
ResNet-34 pretrained on ImageNet to extract the feature representation of each frame. These
representations are concatenated into a feature vector and classified by two fully-connected
layers.

That is all we used in the submission.
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Abstract

In this paper, we introduce our method for ActivityNet
Challenge 2018 Task C (Moments in Time). We used a 3D
convolutional neural network (CNN) pretrained on Kinetics-
400, and finetuned it on Moments in Time. We experimen-
tally evaluated the performance of our method.

1. Introduction
We focus on the trimmed event recognition task (Task C)

in ActivityNet Challenge 2018. We use a 3D convolutional
neural network (CNN) pretrained on Kinetics-400 [1] to rec-
ognize events. In our previous work [2], we trained various
3D architectures on Kinetics-400 and released them1. We
use the pretrained ResNeXt-101 for the recognition on the
Moments in Time dataset.

2. Implementation
We use stochastic gradient descent with momentum to

train the network and randomly generate training samples
from videos in training data in order to perform data aug-
mentation. First, we select a temporal position in a video
by uniform sampling in order to generate a training sample.
A 16-frame clip is then generated around the selected tem-
poral position. If the video is shorter than 16 frames, then
we loop it as many times as necessary. Next, we randomly
select a spatial position from the 4 corners or the center. In
addition to the spatial position, we also select a spatial scale
of the sample in order to perform multi-scale cropping. The
scale is selected from

{
1, 1

21/4 ,
1√
2
, 1

23/4 ,
1
2

}
. Scale 1 means

that the sample width and height are the same as the short
side length of the frame, and scale 0.5 means that the sample
is half the size of the short side length. The sample aspect
ratio is 1 and the sample is spatio-temporally cropped at the
positions, scale, and aspect ratio. We spatially resize the
sample at 112 × 112 pixels. The size of each sample is 3

1https://github.com/kenshohara/3D-ResNets-PyTorch

Table 1: Accuracies on the Moments in Time validation set.
Average is averaged accuracy over Top-1 and Top-5.

Method Top-1 Top-5 Average

ResNeXt-101 28.5 53.9 41.2

channels × 16 frames × 112 pixels × 112 pixels, and each
sample is horizontally flippedwith 50%probability. We also
performmean subtraction, which means that we subtract the
mean values of ActivityNet from the sample for each color
channel. All generated samples retain the same class labels
as their original videos.

In our training, we use cross-entropy losses and back-
propagate their gradients. The training parameters include
a weight decay of 0.001 and 0.9 for momentum. When
finetuning the network, we start from learning rate 0.01, and
divide it by 10 after the validation loss saturates.

3. Experiments
Table 1 shows the results on the Moments in Time val-

idation set. We recognized the videos of the test set using
this network, and submitted the results.

4. Conclusion
In this paper, we described the submission for the Task C

of ActivityNet Challenge 2018.
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Abstract

Action recognition in videos remains a challenging prob-
lem in the machine learning community. Particularly chal-
lenging is the differing degree of intra-class variation be-
tween actions: While background information is enough
to distinguish certain classes, many others are abstract
and require fine-grained knowledge for discrimination. To
approach this problem, in this work we evaluate differ-
ent modalities on the recently published Moments in Time
dataset, a collection of one million videos of short length.

1. Introduction
There are hundreds of thousands of activities occurring

around us in our daily life. Most of these activities are not
only restricted to one person or a single motion, but involve
many types of actors in different environments, at differ-
ent scales, and with many different modalities. If we want
to solve problems that are relevant to our real world, it is
necessary to develop models that scale to the level of com-
plexity and abstract reasoning that a human processes on
a daily basis. We propose a new approach to tackle these
challenges. To evaluate our work, we use the Moments in
Time Dataset [7].

Moments in Time Dataset is a large-scale human-
annotated collection of one million short videos corre-
sponding to dynamic events unfolding within three seconds
and has a significant intra-class variation among the cate-
gories.

The dataset poses a number of challenges that we need
to conquer. First, the videos have a diverse set of actors,
including people, objects, animals and natural phenomena.
Second, the recognition may depend on the social context
of ownership and the type of place. For example, picking
up an object, and carrying it away while running can be cat-
egorized as stealing, saving or delivering, depending on the

∗Equal contribution

ownership of the object or the location where the action oc-
curs. Third, the temporal aspect: the same set of frames in a
reverse order can actually depict a different action, consider
for example opening vs. closing. Since we want to
build a true video understanding model, we need to be able
to recognize events across agent classes. In other words,
it is necessary to recognize these transformations in a way
that will allow them to discriminate between different ac-
tions, yet generalize to other agents and settings within the
same action.

In this work, we investigate the fusion of features of dif-
ferent modalities. In Section 2, we outline each modality.
In Section 3, we discuss the fusion methods, and provide
preliminary results on the Moments in Time Mini validation
set. Finally, Section 4 discusses analytic insights into the
dataset based on a simple RGB baseline.

2. Methodology
We investigated a number of modalities of interest for

action recognition. We first discuss each modality, and then
examine both early and late fusion of these modalities.

2.1. RGB and optical flow

In action recognition, we consider two essential visual
concepts: appearances and motions. Most action recogni-
tion work uses RGB frame and optical flow as the visual
representation respectively. In order to fully utilize the vi-
sual contents from videos, a practical approach, introduced
by [9], models short temporal snapshots of videos by aver-
aging the predictions from a single RGB frame and a stack
of 10 externally computed optical flow frames, which is also
known as Two-stream ConvNets method.

Temporal Segment Networks There have been many im-
provements over the basic two-stream architecture, and one
of the most well-known method is Temporal Segment Net-
works (TSN) [11]. Instead of working on single frames or
frame stacks, TSN operate on a sequence of short snippets
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sparsely sampled from the entire video. Each snippet in this
sequence will generate its own preliminary prediction of the
action classes. Then a consensus among the snippets will be
derived as the video-level prediction. We use the same set-
tings as the original work for our prediction.

Temporal Relational Reasoning Temporal Relational
Reasoning Network (TRN) [12] can learn and discover pos-
sible temporal relations at multiple time scales. TRN is a
general and extensible module that can be used in a plug-
and-play fashion with any existing CNN architecture. We
also use the same settings for our prediction.

2.2. Sound

Sound is a valueable modality in action recognition. It
can not only complement visual observations, but also help
add information where vision is not available, i.e., unseen
or occluded surroundings.

Feature extraction We use two pretrained models for au-
dio feature extraction: Audio Event Net (AENet) [10] and
VGGish pretrained on AudioSet[4].

To ensure that our sound features are useful for the fu-
sion tasks, we ignore those videos with no audio channels
or channels that are muted. We use wav file format with
16kHz sampling rate, 16bit, monoral channel; the codec is
PCM S16 LE.

In AENet, the dimensions of extracted features are
(N, 1024), where N equals to the total length in seconds.
On the other hand, we used the VGGish to save those fea-
tures into (N, 3, 128) embeddings. It took about 12 hours
to extract features for each from the mini training set with
one K80 GPU.

We trained 200 linear SVM binary classifiers for each
class using the extracted AENet and VGGish features re-
spectively. Besides, we did not perform any preprocessing
on the extracted AENet features while we flattened the ex-
tracted VGGish features to dimension (N, 384) before we
fed them into the SVM classifiers for training and testing.
We got distances to the 200 separating hyperplanes after
feeding each testing sample into the 200 binary classifiers
and use these distances to do classification.

Table 1. Numbers of videos with and without sound
Videos With sound Without sound Total
Training 55,933 44,067 100,000
Validation 6,286 3,714 10,000
Testing 12,776 7,224 20,000

Feature generation We found out that not all the videos
have sound track. The detailed number of videos with and
without sound is listed in Table 1. We can see half of videos

Figure 1. Sound generation with LSTM.

Figure 2. Sound generation with Encoder-Decoder.

do not have sound, but the sound plays an important role in
videos. Therefore, we want to generate the sound represen-
tation for those videos without sound.

We use two basic structures to generate the sound:
LSTM in Figure 1 and encoder-decoder in Figure 2. First,
we use the feature representation extracted by TSN as struc-
ture input, then go through the structure and get the out-
put feature. The groundtruth sound representation is ex-
tracted by AENet and VGGish. In training stage, we use
videos with sound to be the training set, and in testing stage,
we will generate the sound representation for those videos
without sound. We have four kinds of settings: L2 loss+ w/
classifier, L2 loss+ w/o classifier, KL loss+ w/ classifier, KL
loss+ w/o classifier. We want to know if label information
and different kind of loss are important to the generation.

Table 2. AENet generation with LSTM.
AENet / LSTM Top-1 acc. Top-5 acc.
w/o generation (baseline) 4.41% 11.78%
L2 loss, w/ classifier 4.53% 11.69%
L2 loss, w/o classifier 5.19% 13.44%
KL Div., w/ classifier 4.47% 11.50%
KL Div., w/o classifier 4.45% 11.40%
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Table 3. VGGish generation with LSTM.
VGG / LSTM Top-1 acc. Top-5 acc.
w/o generation (baseline) 1.57% 7.29%
L2 loss, w/ classifier 1.54% 6.91%
L2 loss, w/o classifier 1.95% 7.59%
KL Div., w/ classifier 1.59% 6.85%
KL Div., w/o classifier 1.59% 6.83%

Table 4. AENet generation with fully-connected.
AENet / FC Top-1 acc. Top-5 acc.
w/o generation (baseline) 4.41% 11.78%
L2 loss, w/ classifier 4.70% 11.70%
L2 loss, w/o classifier 4.70% 11.70%
KL Div., w/ classifier 4.52% 11.48%
KL Div., w/o classifier 4.55% 11.60%

Table 5. VGGish generation with fully-connected.
VGGish / FC Top-1 acc. Top-5 acc.
w/o generation (baseline) 1.57% 7.29%
L2 loss, w/ classifier 2.19% 7.86%
L2 loss, w/o classifier 2.11% 7.84%
KL Div., w/ classifier 1.71% 7.23%
KL Div., w/o classifier 1.72% 6.90%

Feature generation performance The generation perfor-
mance is found in Tables 2,4,3,5. We can see that for
AENet feature, L2 loss + w/o classifier performs the best,
and for Vggish feature, L2 loss + w/ classifier performs the
best. Therefore, we choose these two model to generate our
sound representation.

2.3. Pose-centric features

Our preliminary evaluation, see also Section 4, shows
that classes with large intra-class variations, i.e., more ab-
stract classes, are hard to learn for baseline models. To
attempt an improvement of these classes, we learn fine-
grained, human pose-based features.

Method. We generate discriminative human pose features
with the help of Recurrent Pose Attention Networks (RPAN)
[2]. Given the convolutional feature maps Ct of each video
frame, attention maps αJ

t are learned for each joint J in a
human pose. The learning process is supervised by the in-
clusion of an l2-regression term. As the Moments in Time
dataset does not provide human pose annotations, we em-
ploy the human pose detector in [1] to retrieve groundtruth
annotations.

For the purposes of this work, we simplify the formula-
tion of α̃t =

[
α̃0
t , · · · , α̃J

t

]
by dropping the partial parame-

ter sharing used in [2]:

α̃t = v ∗J tanh (Ah · ht−1 +Ac ∗D Ct + b) (1)

αJ
t = softmax

(
α̃J
t

)
(2)

where ∗J denotes a (1 × 1 × J) convolution. The term
Ah · ht−1 has dimension D = 32 and is therefore broad-
casted over the spatial dimensions. Input ht−1 is the previ-
ous output of the recurrent network learned on body parts,
see below.

Given the attentional maps αJ
t , we can construct human

body parts P by summation. We follow the work in [2], and
construct five body parts torso, elbow, wrist, knee, ankle.
More formally, we construct FP

t :

FP
t =

∑

J∈P

∑

k

αJ
t ◦ Ct (3)

where ◦ denotes elemenwise multiplication (attention maps
are broadcasted over the channel dimension). The result is
a fixed-size descriptor for each body part. These five pose
features are then max-pooled to form the input to an LSTM
recurrent network, for details please refer to [2].

Performance. The method by itself achieved a top-1 ac-
curacy of 21.0% on Moments in Time Mini dataset. This
is largely due to the lack of human poses in many classes,
which will result in FP

t = 0. In fact, using the pose detec-
tor in [1], we were not able to extract any pose for roughly
47% of all frames.

2.4. Attribute

We consider that some specific objects will appear in
related videos, e.g., a knife often appears in the video of
cutting and slicing, a mower often appears in the
video of mowing, and a computer often appears in the
video of typing. According to the above inference, we
can take these specific objects as the attributes of related
videos. In order to obtain the attributes of videos, we use
ResNet101 [5] pre-trained on two publicly available multi-
label datasets, NUS-WIDE [8] (81 concept labels) and MS-
COCO [6] (80 object labels) to extract the feature. We ex-
tract features at one frame per second because we believe
that the composition of objects will not change dramatically
on a framewise basis.

Method We concatenate the extracted feature of three
frames as X ∈ R3×2048. Given the input X ,

y = f(X, θ), y ∈ R200 (4)

where y = [y1, y2, ..., y200]T are the predicted label confi-
dences computed by two fully-connected layers.
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Table 6. The accuracy of different feature extracted from
ResNet101 pre-trained on NUS-WIDE dataset and COCO dataset.

Dataset Top-1 accuracy Top-5 accuracy
NUS-WIDE[8] 10.02% 27.15%
MS-COCO[6] 10.14% 27.57%

Table 7. Five classes perform the best.
Best classes NUS-WIDE[8] MS-COCO[6]
Top-1 Grilling: 60% Grilling: 56%
Top-2 Mowing: 54% Clinging: 54%
Top-3 Typing: 52% Howling: 54%
Top-4 Welding: 52% Hiking: 48%
Top-5 Clinging: 46% Boiling: 46%

Performance According to the result show in Table 7, we
can find out that the more similar composition of objects is,
the higher accuracy we will get.

2.5. Attribute consistency loss

Method Attribute consistency loss (ACL), introduced by
[3], focuses on the domain adaptation under the setting of
fine-grained recognition. ACL hopes the deep model will be
more generalized to examples from the real world instead of
overfitting on a given dataset.

In order to do so, ACL uses the concept of multi-task
learning: predict classes and attributes at the same time
by sharing the last features extracted from the deep model.
Here attributes can be any properties we detected from ex-
amples. In our case, we use the scores of a model deal-
ing with COCO object detection tasks (80 objects in total).
In other words, our attributes represents the probability of
occurrence of each object in a video. Besides predicting
classes and attributes, the other part in ACL is to reduce
the distribution distance (measured by symmetric KL diver-
gence) between predicted attributes and mapped attribute,
where mapped attribute is mapped from predicted classes.

In our case, we calculate all the objects’ scores for each
video in the training set. The results are then grouped by
action class to aggregate the mean. Consequently, we have
the function to map from action class to 80 object occur-
rence scores.

Table 8. Five highest and lowest intra-class object variation.
Class Highest Class Lowest
Feeding 1.91618 Erupting 1.28444
Spreading 1.91230 Protesting 1.33439
Scratching 1.87774 Waxing 1.34714
Chewing 1.87588 Tattooing 1.36594
Biting 1.87104 Mowing 1.40809

Performance First, we tried a simple model (LSTM over
DenseNet) to evaluate the score with/without ACL on the

Table 9. Correlation between F1 score and intra-class object vari-
ation

Correlation Top-1 acc. Top-5 acc.
Base model -0.6019 -0.5462
With ACL -0.5883 -0.5933

Figure 3. The structure of early fusion method. We fuse the feature
maps of the modalities mentioned above at different stages, and
then predict the final results.

Moments dataset. The one with ACL took longer time to
converge but got close accuracy compared to the one with-
out ACL. We also computed the intra-class object variation,
and the results are found in Table 8. However, from Ta-
ble 9, we find that the F1 score of a class with lower intra-
class attributes variation will be higher (negative correla-
tion), showing that if the videos in a class have relatively
consistent object occurrence, its easier for a model to per-
form prediction. Moreover, the model with ACL has lower
correlation than the one without ACL. After we apply ACL
on TSN, the performance drops a bit. Due to the lack of
time, we abandon it and did not do deeper examination. If
more attributes extractors from different views are applied,
it might be beneficial for future fusion.

3. Fusion
We evaluate two fusion schemes, Early Fusion and Late

Fusion.

3.1. Early fusion

The early fusion structure is depicted in Figure 3. Let
the feature map extracted from ResNet101 pre-trained on
COCO dataset be denoted as C ∈ R7×7×2048, the feature
map extracted from ResNet101 pre-trained on NUS-WIDE
dataset as N ∈ R7×7×2048, the rgb feature map extracted
from TSN as R ∈ R7×7×1024, the optical flow feature map
extracted from TSN as F ∈ R7×7×1024, the feature ex-
tracted from AENet as E ∈ R1024 and the feature map
extracted from VGGish as V ∈ R3×128.

For the frame part, first, we concatenate C and N , then
go through a 1 × 1 convolution layer to fuse these two
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modalities and denote the fusion feature map of attribute
as A ∈ R7×7×1024. Second, we concatenate A, R and F
then go through a 1×1 convolution layer to fuse these three
modalities and denote the fusion feature map of frame as
M ∈ R7×7×1024. Third, let M go through a global average
pooling layer and get M ∈ R1024.

For the sound part, first, we do zero padding for those
videos without sound. Second, we concatenate E and V ,
then go through a fully-connected layer to fuse these two
modalities and denote the fusion feature map of sound as
S ∈ R1024.

Last, we concatenate M and S as our final feature ∈
R2048 and go through a fully-connected layer to get the pre-
diction.

Table 10. The accuracy of early fusion.
Method Top-1 accuracy Top-5 accuracy
Early fusion 22.19% 45.45%

Table 11. The accuracy of early fusion compares to the accuracy
of late fusion.

Increase Decrease
Top-1 Ascending: +37% Sailing: -72%
Top-2 Bending: +24% Protesting: -57%
Top-3 Playing music: +18% Surfing: -54%
Top-4 Biting: +15% Hiking: -46%
Top-5 Baking: +14% Diving: -42%

Performance According to the result shown in Table 11,
we can find out that the method of late fusion is better than
the method of early fusion on the video classification prob-
lem.

3.2. Late fusion

We take the (pre-softmax) prediction scores of every
modalities and do the simple and (scalar) weighted average.
The results are shown in Table 12.

Table 12. Late fusion of 7 modalities on the MIT Mini validation
set.

Method Top-1 accuracy Top-5 accuracy
Average fusion 37.09 65.29
Weighted fusion 44.21 72.96

3.3. Ablative study of Late Fusion

In order to identify which modalities provides the largest
impact, we perform an ablative study. Given the classi-
fier scores for the seven modalities, we run two late fusion
methods (summation and scalar weighting) and report the

Table 13. Ablative study for (late) sum fusion of 7 modalities on
the MIT Mini validation set.

Configuration Top-1 accuracy (%) Top-5 accuracy (%)
Full 37.09 65.29
w/o TSN (RGB) 31.45 58.11
w/o Flow 34.2 62.01
w/o Aenet 36.96 65.21
w/o Attribute 37.05 65.3
w/o VGGish 36.58 64.82
w/o RPAN 44.84 73.83
w/o TRN (RGB) 31.92 60.12

Table 14. Ablative study for (late) weighted fusion of 7 modalities
on the MIT Mini validation set.

Configuration Top-1 accuracy (%) Top-5 accuracy (%)
Full 44.21 72.96
w/o TSN (RGB) 37.62 65.92
w/o Flow 39.81 69.22
w/o AENet 43.76 72.77
w/o Attribute 44.22 73.05
w/o RPAN 44.24 73.34
w/o TRN (RGB) 37.47 66.95

results in Tables 13 and 14. Note that we tried other param-
eterized fusion methods, but do not report results here, as
those severely overfitted.

Clearly, RGB features remain the most important modal-
ity. Pose features did not perform well in the 7-modality fu-
sion, however, it should be noted that RPAN did add a 6%
improvement when only the first six modalities were con-
sidered, i.e., TRN was left out.

4. Analysis
We train a baseline model consisting of ResNet-50 with

an added LSTM layer, and share the observations of our
analysis. We begin by studying the confusion matrix and
distinguishing different types of confusion:

Semantic similarity is an issue where classes have simi-
lar meaning. An example is slicing, which is misrecog-
nized as chopping in 28% of validation set cases.

Visual similarity Certain actions cannot be discriminated
by visual features alone, but require other modalities. An
example for this case is howling being falsely classified
as barking by the RGB baseline in 24% of examples.

Subset of class Numerous actions form a subset of or
intersect with another action class, which necessitates
multi-label classification. The classes pedaling and
bicycling exemplify this, where the latter is misclassi-
fied as the former in 16% of cases.
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Time reversed classes show similar visual content, but
are reversed from each other. One classic instance here
is closing, which is misclassified in 20% of cases as
opening.

4.1. F1-score ranking

In the following, we rank classes by their (baseline) F1-
score and note our observations. While we cannot list all
classes, we list a selection actions in Table 15. Note that
for space reasons the table does not show all best- or worst-
performing actions.

Table 15. F1-score for selected actions in baseline ResNet-50 +
LSTM model.

Class name F1-Score
Erupting 0.612
Rafting 0.549
Bulldozing 0.454
· · · · · ·
Spreading 0.040
Catching 0.026
Opening 0.020
Pulling 0.000

We observe that performance correlates with intra-class
variation. Classes such as erupting are typically subject
to smoke, lava, etc. and therefore easy to recognize. This
is unlike the actions with low F1-score in Table 15: Actions
like pulling are more abstract and can be associated with
one of a diverse set of objects; these actions hence have a
large intra-class variability.

We propose that more fine-grained features are necessary
to improve the failure cases with high intra-class variance.
In particular, instead of relying on background information,
fine-grained information about pose needs to be retrieved
and processed.

5. Conclusions
In this paper, we evaluated many modalities in videos on

the Moments in Time dataset, which has a significant intra-
class variation among the categories. This work discussed
the essential elements of videos from different aspects, and
demonstrated experiments on different modalities. Our ex-
periments also indicate that late fusion with many modali-
ties performs better than early fusion.
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Abstract

This report introduces our submission to the Moments in
Time Challenge 2018. In this task, we integrate static infor-
mation, short-term temporal information, long-term tempo-
ral information and acoustic information to recognize the
actions or events in the videos. Our method finally ob-
tains top-1 accuracy of 27.9% in full-track validation set
and 33.6% in mini-track validation set.

1. Introduction
Moments in Time dataset includes a collection of one

million labeled 3 second videos, which aims to to help
AI systems recognize and understand actions and events in
videos.

In this report, we focus on learning different time scale
representations for video classification and incorporating
other sources of information such as audio signal to pro-
vide complementary information. In the following sections
we will present our approach and show the results.

2. Approach
In order to understand the videos from multiple tempo-

ral scale, we combine static information, short-term tempo-
ral information and long-term temporal information via a
simple late fusion. In addition, we utilize acoustic signal
features since it provide complementary information. We
ensemble these models to get the final predictions of the
videos. Next we describe each component in detail.

2.1. Static Information

For static information, we exploit frame-based features
to recognize actions or events. We deploy Inception-Resnet-
V2[6] architecture with temporal segment networks[8]
framework. During training, each video is divided into 3
segments and one frame is sampled from each segment. The
frame-wise prediction is fused by average pooling. During

testing, 20 frames equidistant in time are sampled and the
predctions are averaged to genarate video-level prediction.

To improve performance, we fintune the model from
ImageNet pretrained and Kinetics-400 pretrained ones.
The model finetuned from Kinetics-400 pretrained model
achieves higher accuracy. Besides, considering training on
hard samples, we try to use focal loss[4] in this classifica-
tion task and find that it just accelerated convergence but
did’t increase the performance.

Our performance comparison on validation set is showed
in Table 1.

Models Full-track Top-1 Mini-track Top-1
IR-scratch 0.1946 -

IR-ImageNet 0.2419 -
IR-Kinetics-400 0.2524 0.3026
IR-Kinetics-FL 0.2513 0.3124

Table 1. Performance comparison of different models for static in-
formation.(IR here denotes InceptionResnetV2.)

2.2. Short-term Temporal Information

To encode spatial and short-term temporal informa-
tion, we apply Pseudo-3D Residual Networks[5] in our ap-
proach. We use 199 layers variant as our base framework
and mix different P3D Blocks as described in [5]. In the
training stage, one 16-frame clip is randomly sampled from
each video as the input while during testing we sample 4
clips uniformly from each video and fuse the output of the
final layer.

We first pretrain our model from Kinetics-400 dataset
and then full-train the model on the Moments in Time
dataset. For Mini-track, to accelerate the training process
and capture longer term motion information, we experi-
ment with different sampling strategies on the input: sam-
pling clips from consecutive frames and down-sampling
clips with different sampling intervals. Accuracy compar-
ison on validation set is described in Table 2.
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Models Full-track Top-1 Mini-track Top-1
P3D-Kinetics 0.2091 0.2634

P3D-Kinetics-s2 - 0.2612
P3D-Kinetics-s4 - 0.2614

Table 2. Performance of different models using Pseudo-3D Resid-
ual Networks with different sampling interval. s2, s4 denote the
sampling interval of 2 frames and 4 frames respectively.

2.3. Long-term Temporal Information

To capture long-term temporal information, we intend
to model the temporal evolutions of features. We first
extract frame-level features using our Kinetics pretrained
Inception-Resnet-V2 model from 10 frames uniformly sam-
pled from each video, and then apply a temporal convolu-
tion (denoted as TemporalConv or TC below for simplicity)
and a parametric pooling along time dimension, which fol-
lows a MOE model like [1] to classification.

Inspired by ARTNet proposed in [7], we further employ
a multiplicative interactions (denoted as MultiplyInter or
MI below for simplicity) to model relations across features
as a supplement to the TemporalConv features.

Moreover, Temporal Relation Network[9] models the
temporal dependencies between multiple frames at multi-
ple time scales. Here we use the pretrain model1 provided
by the author to model multi-scale temporal informatioin
for classification.

Results of different methods on validation set are illus-
trated in Table 3.

Methods Full-track Top-1 Mini-track Top-1
TemporalConv 0.2626 0.3251
MultiplyInter 0.2638 0.3268

TRN 0.2120 -

Table 3. Performance of different methods for long-term temporal
information.

2.4. Acoustic Information

We also utilize acoustic features as complementary in-
formation in our approach. We first compute log mel spec-
trograms from the audio of each video and use a pre-trained
VGGish model[3] to extract 128-D semantically meaning-
ful, high-level embedding features[2], and then take the fea-
tures as input and use a 4 layers full-connected network for
classification. We finally obtain 0.045 top-1 accuracy on
validation set.

1http://relation.csail.mit.edu/models/TRN_
moments_RGB_InceptionV3_TRNmultiscale_segment8_
best.pth.tar

3. Ensemble Results
Finally, we ensemble the models mentioned above to

get the prediction. Results on Full-track and Mini-track
are showed in Table 4 and Table 5 respectively. It should
be noted that in both two tracks, we use the consecutive-
sampling strategy mentioned above in P3D models for final
combinations.

Models combinations Top-1 Top-5
IR+P3D 0.2638 0.5187

IR+P3D+TRN 0.2676 0.5262
IR+P3D+TC+TRN 0.2746 0.5345

IR+P3D+TC+MI+TRN 0.2786 0.5368
IR+P3D+TC+TRN+audio 0.2756 0.5291

IR+P3D+TC+MI+TRN+audio 0.2796 0.5397

Table 4. Top-1 and Top-5 accuracy of different models combina-
tions on Full-track.

Models combinations Top-1 Top-5
IR+P3D 0.3246 0.6082

IR+P3D+TC 0.3337 0.6196
IR+P3D+MI 0.3347 0.6237

IR+P3D+TC+MI 0.3358 0.6219

Table 5. Top-1 and Top-5 accuracy of different models combina-
tions on Mini-track.
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Abstract 

This notebook paper describes our system for the trimmed event recognition (Moments 

in Time) task in the ActivityNet challenge 2018. We investigate multiple state-of-art 

approaches for the event recognition in short, trimmed videos. With these approaches, 

we derive an ensemble of deep models. 

1. Introduction 

Event recognition has remained a challenging task in the computer vision community. 

The research about event recognition also are very important in other tasks like video 

understanding. And Moments in Time dataset is a large-scale human-annotated 

collection of one million short videos corresponding to dynamic events unfolding 

within three seconds [1].  

The rest of this paper is organized as follows. Section 2 presents our approach in detail, 

finally Section 3 concludes this work. 

2.Experments 

2.1 Data Augmentation 

We fix the size of input image or optical flow fields as 256 × 340, and the width and 

height of cropped region are randomly selected from {256,224,192,168}. Finally, these 

cropped regions will be resized to 224×224 for network training. What’s more, we use 

additional three-quarters validation set as a part of training set and use the other one-

quarter validation set (Seen as Spilt1 Val) to evaluate the performance of our models. 

2.1 CNN models 

The main model we use is STRNet, i.e. Spatiotemporal Recalibration Networks. 

STRNets are 3D networks which aim to solve the temporal disturbance problem in 

vanilla 3D networks and factorized spatiotemporal networks. Due to features from 

different pipelines can capture different information. We use four other models to 

capture additional information. According to the ensemble results, they can 

significantly improve the performance on the on the Spilt1 validation set. These four 

models are Resnet101[2], TSN [3], TRN [4] and I3D [5]. 

 

2.2 Experiments results 

Table 1 shows the Top-1 and Top-5 accuracy of the baseline models on the Spilt1 

validation set. The best single model is the STR18_tr, with a Top-1 accuracy of 29.76% 

and a Top-5 accuracy of 56.71%. 



Index Model Test Set Top1 TOP5 Ave 

A STR18_tr Spilt1 Val 29.76% 56.71% 43.23% 

B R101 Spilt1 Val 27.49% 52.41% 39.95% 

C I3D Spilt1 Val 24.40% 49.37% 36.88% 

D TRN Spilt1 Val 24.59% 48.90% 36.74% 

E STR18_tr_of Spilt1 Val 17.98% 39.50% 28.74% 

F TSN Spilt1 Val 24.67% 49.52% 37.10% 

G STR34 Spilt1 Val 28.64% 55.99% 42.31% 

TABLE1: Classification Accuracy: We show Top-1 and Top-5 accuracy of the 

baseline models on the Spilt1 validation set. 

As is shown is TABLE 2, the Ensemble model (average) gets the Top-1 accuracy as 

32.08% and Top-5 accuracy as 59.23%. 

Index Test Set Top1 TOP5 Ave 

A Spilt1 Val 29.76% 56.71% 43.23% 

A+B Spilt1 Val 31.59% 58.28% 44.93% 

A+B+C Spilt1 Val 31.23% 58.40% 44.81% 

A+B+D Spilt1 Val 31.91% 58.76% 45.33% 

A+B+D+E Spilt1 Val 31.82% 59.10% 45.46% 

A+B+D+E+F Spilt1 Val 31.82% 59.09% 45.46% 

A+B+D+E+G Spilt1 Val 32.08% 59.23% 45.65% 

TABLE2: Ensemble Results: We show Top-1 and Top-5 accuracy of the ensemble 

models on the Spilt1 validation set. 

3.Conclusion 

This paper describes our team’s solution to task of trimmed event recognition. Features 

from different pipelines can capture different information. We propose several 3D 

spatial-temporal models for event recognition. We also investigate the performance of 

several 2D CNNs like TSN, TRN and Resnet101. 
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Abstract

This paper describes our method for the Moments in
Time Recognition Challenge Full track to ActivityNet Chal-
lenge 2018. In this task, we propose a method for action
recognization by using Non-local Neural Networks,the De-
formable Convolutional Networks and Temporal Relational
Reasoning in Videos. We further demonstrate that a Con-
vNet trained audio information can help with the recog-
nization of the Moments in Time dataset. We only use RGB
frames and audio features to training.

1. Introduction
In recent years, Video-based human action recognition

has become an intensive area of research in the fields of
computer vision and pattern recognition [5, 6, 7]. There are
two significant information in this fields: appearance and
motion. For appearance, since hand-craft features such as
sift are unable to capture global information, numerous re-
cent methods have utilized Convolutional Neural Networks
(CNNs) whose superiority over hand-crafted ones in this
field has been shown. [2] As for motion, it is frequently rep-
resented by optical flow or other motion-based descriptors.
Simonyan et al. [4] ‘s two-stream CNN network which em-
ployed optical flow into temporal network to extract motion
information. However, the pre-calculation of optical flow
is significantly complicated which illustrated the exceed-
ing difficulty of applying it into real-time recognition.We
propose an approach for human action recognition which
fused various CNNs (Audio-TSN, TRN [7], DCN[1] , Non-
local Network [6]) to extract different features from differ-
ent videos with an end-to-end training process. Consider-
ing the application of real-time action recognition, optical
flow has not been implemented in our approach. In this sub-

mission to the challenge, we aim to evaluate the proposed
model on the Moments in Time dataset

2. Moments in Time

Moments in Time Dataset is a large-scale human-
annotated collection of one million short videos which has
the same length of 3 second. There are 339 different classes
in total. And there are existing some action partly or even
fully depend on the audio information. Moments in Time
dataset is also joint as a task in the ActivityNet Challenge
2018. There are two different tracks. The first track is the
full track, which is a classification task on the entire Mo-
ments in Time dataset. It contains 339 classes, 802,264
training videos, 33,900 validation videos, and 67,800 test-
ing videos. The second track is the mini track, which is
a classification take for students on a sub set of Moments
in time dataset. It contains 200 classes, 100,000 training
videos, 10,000 validation videos, and 20,000 testing videos.

3. Method

Our approach use 3 kind of neural network for extract ap-
perance features from RGB image: Non-local Network [6],
Temporal Relation Network (TRN) [7], Deformable Con-
vNets (DCN). We found that audio information also play
a important role in video analyzing, so we also use audio
feature to imporve our recognition accuracy.

We only use RGB frames adn audio features as our train-
ing data. Therefore we lost some temporal information from
still image, so we choose 3D-based convolution neural net-
works (CNN) to exploit temporal information from contin-
uous frames. Because of Non-local Network is the most
powerful architecture in 3D-CNN, so we choose it for tem-
poral feature learning. Relevance also exists in contiguous
video frames. For instance, in the action of drinking, taking
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the glass should be anterior to getting the mouse close to
it. The relevancy of action makes it irreversible. So we use
TRN for extract temporal relationship between continuous
frames. And we think in still image, there is also an relation
between objects such as bottle and person. In our approach,
we do not use object detection methods such as Faster R-
CNN [3] or YOLO directly. We use the deformable Con-
vNets for spatial relationship learning because it success in
oject detection area. Audio is also an important feature in
our approach, we use mel spectrogram feature as our train-
ing data, then use Temporal Segment Network (TSN) to
training.

3.1. Training

1. For Non-local Network, we use both i3d and c2d as
Non-local Network’s backbone, the network is trained using
SGD for 400k iterations. The base learning rate is 0.01 and
the stepsize is 150k and 300k.

2. When traning TRN network, we use the released
pre-trained RGB model for full track. For mini track, we
use InceptionV3 as network’s backbone, and we choose 8-
segments and multiscale strategy for training.

3. For DCN network, we use ResNet101 as network’s
backbone, and replace the res5-c bottleneck to DCN Con-
vNets.

4. For audio stream, we first extract wav file from video
and use audioset to get mel spectrogram feature, then use
TSN network to training.

4. Conclusion

Although we do not get the best performance in compe-
tition, but it shows that relationship in continuous frames
plays an importanct role in video analyzing. And we found
audio also can help effectively.
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Abstract

This draft presents our methods and results on the Mo-
ments in Time challenge 2018. To tackle the task of recog-
nizing the events or activities in trimmed videos, we tried
various models with different input modalities. In summary,
we not only explored both 2D and 3D models with the dif-
ferent backbones, but also fed both RGB frames and optical
flows into these models. Finally, we ensemble these models
to achieve the better recognition performance.

1. Our Approach and Result
In the Moments in Time challenge 2018, the participants

should design methods to recognize the events in the three-
seconds videos. This challenge uses the Moments in Time
dataset as the benchmark. This dataset is challenging for the
reason that (1) the events occurred in videos are abstract,
(2) the events are not only performed by human, but also
animals or objects, (3) the events are visual and/or audible
actions. This dataset contains 802,264 videos for training,
33900 for validation and 67800 for testing. At this time,
each video only belongs to one of 339 classes.

We present the experiment result at Table 1.
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Model Modality K Backbone Top-1 Acc. Top-5 Acc.
C2D TSN RGB 5 Inception-v3 27.2% 51.5%
C2D TSN RGB 5 ResNet-101 29.5% 55.8%
C2D TRE RGB 5 ResNet-101 30.8% 56.6%
C2D R101 Flow 5 ResNet-101 16.4% 37.5%
C2D TRE Flow 5 ResNet-101 16.8% 38.0%
I3D Inv1 RGB 16 Inception-v1 26.2% 50.3%
I3D R50 RGB 16 ResNet-50 26.6% 50.5%
NL-I3D R50 RGB 16 ResNet-50 28.1% 53.7%
I3D Inv1 Flow 16 Inception-v1 10.1% 27.9%

Table 1. The experiment results on the validation set of Moments in Time full dataset. The first column indicates the model names. For 2D
models, K present the num of segments for training. For 3D models, K presents the num of frames for training. The first group presents
the results performed by the C2D models with different backbones when using the RGB modality. The second group presents the optical
flow results. The last two groups are I3D models with different backbones and modalities.
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1. Overview 

This paper describes STAIR Lab submission to       
ActivityNet 2018 Challenge for guest task C:       
Trimmed Event Recognition (Moments in Time) [1].       
Our approach is to utilize three networks, Audio        
Net, Spatial-temporal Net, and DenseNet to make       
individual predictions, then use MLP to fuses the        
results to make an overall prediction. The flow chart         
of our approach is shown in figure 1. 

2. Implementation 

2.1 Audio network 
Our audio dataset training is different from other        

methods. Usually, auditory raw waveforms are used       
as input and are fed into a model like SoundNet [2].           
In our case, firstly, we converted auditory raw        
waveforms to spectrogram images, then fed them to        
2D ResNet101 [3] to train a classifier. The top-1         
accuracy of this model is 13.04%, which is higher         
than top-1 accuracy 7.60% presented in [1]. 
 
2.2 Spatial-temporal network 

We used 3D ResNet101 [4] to extract       
spatial-temporal visual features from a video. To       
train a classifier, a temporal position in an input         
video is randomly selected, and 16 frames are        
extracted around the selected temporal position. The       
frames are spatially cropped by multi-scale random       
four corner and center cropping, and horizontally       
flipped with 50% probability. Other parameters are       
same as the paper [4]. 
 
2.3 2D RGB network 

Single frame in a video is still informative even         
in the action recognition. So we used DenseNet [5]         
for extracting image features from a randomly       
selected frame in a video. Number of layers was         
201. 
 
2.4 Fusion 

We utilized the three models above to predict the         
test set. Log Softmax function is applied to the last          
layer of each model, and results are concatenated to         
generate two vectors, one including audio      
prediction, the other without audio prediction. Then,       
MLP is trained. Top-1 and top-5 accuracy of out         
method for the validation set are shown in table 1. 
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Abstract—This paper introduces our solution for the full track
of the Moments in Time 2018 video event recognition challenge.
Our system is built on spatial networks and 3D convolutional
neural networks to extract spatial and temporal features from
the videos. We also take advantage of multi-modality cues,
including optical flow and audio information to further improve
the performances. Our final submission is an ensemble of 5
models: three based on RGB frames as well as one optical flow
model and one audio model, achieving top1 38.1%, top5 65.3%
on the validation set.

I. INTRODUCTION

Video recognition is one of the most fundamental research
topics in the computer vision. With development of compu-
tation and release of large video classification dataset such
as Kinetics [8] and Moments in Time [13], it has therefore
been an urgent need to develop more efficient automatic video
understanding and analysis algorithms.

Currently, there are three kinds of successful frameworks
that dominate the video recognition (1) two-stream CNNs [15],
[17], (2) 3D CNNs [16] and its variant [14], [18], and (3) 2D
CNNs with temporal models on top such as LSTM [3], [9],
temporal convolution [1] and attention modeling [10], [11].
The winner of Kinetics challenges last year [1] proposed a
novel solution by first extracting the multi-modality features
from the learned networks and then fed them into the off-shelf
multi-modality temporal models to conduct video classifica-
tion. However, these approaches are not applicable to large-
scale video datasets, such as Moments in Time [13], since they
rely on extracting features from all videos beforehand, which
is extremely time-consuming and expensive.

To address these challenge, we mainly adopt end-to-end
training architectures with three modalities, namely appear-
ance, motion and acoustic information. We compared the
performance of different models and finally chose Inflated 3D
and Non-local module for appearance modality and 2D CNN
model for the motion and acoustic modalities.

The remaining sections are organized as follows. Section
II presents some details of our method. In section III, we
compare different approaches, followed by the conclusion of
this report in section IV.

† Work down while interning at Megvii

II. THE PROPOSED METHOD

In this section, we will introduce the applied multiple
models and modality, including observation and obtained score
for each model.

A. Appearance clues

We have experimented different methods including 2D
CNNs, Temporal Segment Networks and inflated 3D neural
network to extract the video feature. We extract RGB frames
from the videos at 25 fps as original resolution and applied
random crop as augmentation.

Spatial Network. We used Xception network [2] pre-trained
on the Kinetics dataset [8], as well as SENet and SEResNeXt
[6] initialized on ImageNet.

In training, one single RGB image is randomly selected
from the video as the input. In validation, we followed the
testing method in TSN [17] with 25 segmentation and average
fusion.

Temporal Segment Networks. We also explored the Tem-
poral Segment Networks with 5 segments. Surprisingly, it
is not as effectively as in other activity recognition tasks.
The performance of TSN is even lower than single image
performance described above. We speculate that it is due to
the large intra-classes variances and short video duration of
the dataset.

Inflated 3D Network. We combine the Inflated ResNet50
network with non-local modules as the base model.

We apply spatial and temporal convolution separately in the
ResNet block [5], which improves accuracy while reducing the
calculations. We pre-trained the model in Kinetics, and fine-
tuned the network as the base model of TSN. In validation
inference, we crop the input lager than 224, with spatially
average the predictions after the Softmax layer as described
in [4].

Word2Vec Network. Considering the large intra-class vari-
ance of the dataset, We tried to transfer labels into vectors and
minimize the distance between feature and vectors instead of
classification loss.

B. Motion clues

We used an OpenCV implementation of TV-L1 [19] al-
gorithm for computing dense optical flow and converted 2-
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Fig. 1. The designed framework in our method. we apply 2D and 3D convolutional neural network to extract spatial and temporal feature from the video
while take advantage of multi-modality cues, including optical flow and audio information. Our final submission is an ensemble of these models.

TABLE I
RESULTS ON VALIDATION SET.

Model Modality Top-1 Accuracy(%) Top-1 Accuracy(%)
ResNet50 RGB 28.3 53.2

TSN RGB 27.4 53.2
Xception RGB 31.8 59.2
SENet152 RGB 33.7 61.3

SEResNeXt RGB 33.0 60.2
Word2Vec ResNet50 RGB 29.9 56.2

I3d ResNet50 RGB 34.2 61.4
BN-Inception Flow 19.1 41.2

VGG16 Audio 9.1 21.3
Ensemble 38.1 65.2

channel optical flow vectors (u, v) into its magnitude and
direction and stored them as RGB images. We used these
images in the BN-Inception [7] network and takes a stack
of 5 consecutive optical flow fields as input. We employed
SGDR [12] strategy in optical flow training, since we found
that restart the learning rate is helpful to promote the accuracy.
We obtained a validation accuracy of 19.09% (top-1,) 41.17%
(top-5)

C. Acoustic clues

In compliance with the common practice to processing
audio features, a convolutional network based audio classi-
fication system is used. With each video divided into 10
frames, its frequency domain information is extracted through
Fourier Transformation, histogram integration and logarithm
transformation. The vocal information of each video is shaped
as 10x96x64 to a VGG classification net to generate a label
probability distribution prediction.

The character that vocal information is hard to do augmen-
tation makes it likely to overfit the training set. So generally
less complex net leads to a better evaluation results.

D. Training

In this section, we present some details of our method
during training stage. We train the our network end-to-end

with 0.01 initial learning rate and reducing it by a factor of
10 at every 15 epoches. For each RGB and acoustic model,
we train about 30 epoches and 60 epoches for flow model.
We train our model on the 8 Titan GPUs for single image and
TSN experiment, while 3D models are trained in distribution
mode.

III. EXPERIMENT RESULTS

In this section, we present some experiments in our method
in the Table II-A. In this table, we show the results with
different 2D/3D mdoels. From the results, we can find that
i3d resnet50 with model non local can achieve the best results.
While the single image method accuracy is actually not much
lower than i3d network, TSN performs not as efficient as other
datasets. We found that spatial and temporal information are
mutually complementary for final feature fusion. Meanwhile,
motion and acoustic information are essential though the
scores are low, showing the importance of different modality
clues.

Finally, we ensemble all the models on the score after
softmax function to obtain 38.1% top-1, and 65.2% top-5
accuracy on the validation set.



IV. CONCLUSION

In Moments in Time Challenge 2018, we design a new
spatio-temporal action recognition framework. We make ad-
vantage of both 2D spatial network and 3D network, as well
as multi modalities. By this means, we can better extract the
feature of the video in more patterns. In the future, we will
explore the fundamental difference between Moments in Time
dataset with other datasets and find better general presentation
under large variance in intra-class distribution.
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Abstract

This paper presents our system for the video understand-
ing task of the Moments in Time Challenge 2018. Because
of limited computational resources, we only used three fea-
tures in the system, including 2 visual features and 1 audio
feature. After we have the prediction scores of these three
features, we combine them using late fusion and obtain the
final result. Specifically, we observe average fusion can get
promising results in our experiments.

1. Introduction
Although researchers have devoted much research atten-

tion to the visual understanding problem, it is still a chal-
lenging problem. The ubiquitous video record devices have
created videos far surpassing what the users can watch.
Hence, it becomes increasingly urgent to develop efficient
algorithms for automatic video analysis.

Researcher have made much progress to introduce large-
scale datasets for training reliable deep learning models, for
example, ImageNet [4], and Youtube8M [3] . Recently, re-
searchers from MIT have introduced the Moments in Time
Dataset, a collection of one million short videos with a label
each, corresponding to actions and events unfolding within
3 seconds.

2. The Proposed System
In this section, we describe the proposed system for Mo-

ments in Time Challenge 2018.

2.1. Feature Extraction

For the limitations of computing resources, we only em-
ploy three features in our system, including 2 visual features
and 1 audio feature.
Visual Features: We first pretrain an Inflated 3D ConvNet
(I3D) [2] model on ImageNet and Kinects datasets. Then
we apply the pretrained model to the Moments dataset, and

extract the last pooling layer as the representation for each
video.

In addition, we use the TRN-Multiscale [5] following the
baselines reported in [3], since it achieves the best single
model performance. We do not pre-train or fine-tune on
this model. In other words, we only do inference for this
model.
Audio Feature: We employ raw waveforms as the input
modality and adopt the network architecture from SoundNet
[1]. The only difference is that we changed the last layer to
predict the categories from the Moments dataset. We fine-
tune the model downloaded from the official website.

2.2. Inference

For the TRN-Multiscale and audio features, the infer-
ence is conducted end-to-end. For the I3D feature, we feed
the last pooling layer into a 200-mixture Mixture of Experts
(MoE) layer for classification.

2.3. Fusion

When the prediction scores for the three models are
ready, we fuse them using average fusion for its simplicity
and efficiency.

3. Results

We report the results in Table 1. From the experimental
results we can see that the I3D model gets the best single
model performance on the validation set. Also, we observe
that with only three models, we get similar performance as
the baseline reported in the baseline paper.

4. Conclusion

In this paper, we have presented our system for the Mo-
ments challenge. Although the computing resource is very
limited (with only one Titan Xp), we finally achieve promis-
ing results on the validation set.
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Table 1. The performance evaluation on the validation set.

Feature Name Mode Top-1 Top-5

I3D Visual 29.53 56.28
TRN-Multiscale Visual 28.27 53.87

SoundNet Audio 7.60 17.96

Average Fusion – 30.25 57.84
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Moments in Time Summary  
 
Elliot Holtham[1], Moumita Roy Tora[1], Keegan Lensink[1], David Begert[1], Lili Meng[1], Megan 
Holtham[1], Eldad Haber[1], Lior Horesh[2], Raya Horesh[2] 

[1] – Xtract AI  

[2] – IBM Research   
 
Before tackling the 339 class challenge, the full dataset was split into 20 classes to create a 
smaller test problem upon which different solution methods could be examined more quickly. 
For the 20 class subset, a variety of actions were chosen that would require different data 
streams for effective classification (for example barking & clapping for audio), bowling and 
rafting for RGB images, and ascending for motion.  After looking through several of the training 
videos, it was apparent that the content and action of the video could abruptly change 
throughout several of the videos. Each 3 second video was split into 3 x 1s segments with hope 
that at least one of the second segments would capture the main action of the video. 
 
For the mp4 videos which contained audio, .wav files were extracted from the video. Initially 
the .wav files were converted into spectrograms which were then trained using  ResNet 101 
network. Because of lack of time on the final 339 class problem, a pre-trained VGG on Audioset 
was used for the audio files. The features from each second for each video was extracted and 
then the three consecutive feature vectors were passed into an LSTM for the classification and 
the creation of the first data stream. The features for the videos with no audio files were zero 
padded such that the dimensions matched the other streams. 
 
Static images were extracted from the videos at 5 fps using ffmpeg. The images were used to 
fine-tune a pre-trained ResNet 101 model from ImageNet. The trained ResNet 101 model was 
used in two ways. Firstly, the features from each frame were extracted and one random frame 
feature from each second used to train a LSTM to create a separate stream. Secondly, as in the 
MIT/IBM paper, the logits from 6 equidistant frames were averaged to produce a separate data 
stream.   
 
Motion from the videos was extracted in three ways. Firstly, a pre-trained (ImageNet then 
Kinetics) I3D model was fine-tuned on the Moments data at 15 fps. Unfortunately our team was 
running out of time so didn’t manage to fully fine-tune this model to the level that was certainly 
possible. Secondly, temporal slices from the videos were extracted from the 3D volume and 
used to fine-tine a pre-trained ResNet 101 model. For the 20 class subproblem, we had 
originally worked with our Leap-Frog network architectures (https://arxiv.org/abs/1705.03341) 
and had gotten better results than the ResNet 101 network, but didn’t have time to train from 
scratch on the full 339 class problem. Thirdly, a pre-trained TRN model was also used that was 
provided by the “MIT-IBM Watson AI Lab and IBM Research” group. This provided model was 
run on the validation and test datasets. 
 
The audio, temporal and spatial stream features were combined together with an LSTM before 
all of the logits from each stream was ensembled together in a weighted average of the logits 



where the weights were based on the accuracy of that data stream on the validation dataset. 
All of the computations were run internally on desktop computers running GTX 1080Ti video 
cards and 500 GB M2 SSDs. The above workflow gave 34.00% top 1 and 61.75% top 5 on the 
validation set. 
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