
ACTIVITYNET

Activity-Net is a video database on internet with complex human 
activities for studies in computer vision.

The logo is a human silhouette on contortion, doing an Elbow 
Stand Stag inside a red square. We want to transmit the sense of 
movement and our interest in complex human activities on video.

ACTIVITYNET
Large Scale Activity 

Recognition Challenge



ACTIVITYNET

Schedule
13:30 Opening Remarks
13:40 Grouping process Models in Actor-Action 
Segmentation, Jason Corso (Univ. of Michigan)
14:10 Human Pose Estimation and Activity 
Recognition, Bernt Schiele (MPI)
14:40 Challenge Introduction
15:00 Coffee Break
15:15 Classification Task: Results and participant talks
16:15 Detection Task: Results and participant talks
17:15 Closing Remarks
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Organizers
•  General Chairs

•  Program Chairs
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Sponsors
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2015 Google Faculty 
Research Award
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Challenge Winners

Challenge Hosting 
and Organization
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ACTIVITYNETACTIVITYNET

Only in special cases, when there is no option to use colors, the 
logo has to be used at 100% black or white

Challenge Introduction

ACTIVITYNETACTIVITYNET

Only in special cases, when there is no option to use colors, the 
logo has to be used at 100% black or white



ACTIVITYNET

Recognize all activities in daily life
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ActivityNet – A Large scale 
benchmark
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ActivityNet
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ACTIVITYNET

Challenge Data Statistics
•  200 activity categories
•  20K videos, 32K activity instances
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ACTIVITYNET

Challenge Tasks

•  Task I: Untrimmed Video Classification

•  Task II: Activity Detection
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Submission process
•  1. Register to the ActivityNet evaluation server
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ACTIVITYNET

Submission process
•  2. Format and submit your results
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ACTIVITYNET

Policies
•  Only one submission per week per team
•  Generate results on the testing set by analyzing 

audio-visual content only
•  Not use the test set for training or parameter 

tuning
•  The use of external data is allowed

18	  



ACTIVITYNET

Provided tools
•  1. Features
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ACTIVITYNET

Provided tools
•  2. Scripts to download videos
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ACTIVITYNET

Provided tools
•  3. Evaluation code
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# of participants in vision challenges
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Participants from 14 countries
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Only in special cases, when there is no option to use colors, the 
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Classification results
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ACTIVITYNET

Task I: Untrimmed Classification
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Activity: Polishing shoes



ACTIVITYNET

Task II: Activity detection
•  Metrics: 
–  mean Average Precision (determines winners)
–  Top-1 accuracy
–  Top-3 accuracy
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Anonymized submissions 
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Tango
Canoeing

Rock climbing
Water skiing

Rowing
Playing squash
Ironing clothes

Applying sunscreen
Washing dishes

Shot put

Performance (mAP)
0.2 0.6 1.0
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ACTIVITYNET

Qualitative results
•  Videos where the methods do well
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Washing dishes Ironing clothes Shotput
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Qualitative results
•  Videos where the methods fail
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Water skiing Rock climbing Applying sunscreen
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Rank Organization mAP Top-1

10 Oxford Brookes 82.5 76.7



ACTIVITYNET

10. Oxford Brookes
•  Uses features provided by the challenge 

organizers (IDT, GoogleLeNet, C3D) to learn 
one-vs-all SVM classifiers

•  A meta-classifier is used to fuse all features
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Rank Organization mAP Top-1

9 Xerox Research 82.6 78.5
10 Oxford Brookes 82.5 76.7



ACTIVITYNET

9. Xerox Research
•  Data augmentation
•  IDTs and Audio features to represent videos
•  SVM classifiers are used to learn the action 

models
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Rank Organization mAP Top-1

8 UC Merced 83.1 78.4
9 Xerox Research 82.6 78.5

10 Oxford Brookes 82.5 76.7



ACTIVITYNET

8. UC Merced
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UC Merced Submission to the ActivityNet Challenge 2016

Yi Zhu Shawn Newsam
University of California, Merced, USA

{yzhu25,snewsam}@ucmerced.edu

Zaikun Xu
University of Lugano, Switzerland

xuz@usi.ch

Abstract

This notebook paper describes our system for the

untrimmed classification task in the ActivityNet challenge

2016. We investigate multiple state-of-the-art approaches

for action recognition in long, untrimmed videos. We exploit

hand-crafted motion boundary histogram features as well

feature activations from deep networks such as VGG16,

GoogLeNet, and C3D. These features are separately fed to

linear, one-versus-rest support vector machine classifiers to

produce confidence scores for each action class. These pre-

dictions are then fused along with the softmax scores of the

recent ultra-deep ResNet-101 using weighted averaging.

1. Introduction

Human action recognition in video is a fundamental
problem in computer vision due to its increasing importance
for a range of applications such as video recommendation
and search, video highlighting, video surveillance, human-
robot interaction, human skill evaluation, etc.

The ActivityNet challenge [4] is a large scale bench-
mark designed to stimulate research on human activity un-
derstanding in user generated videos. This challenge con-
sists of two tasks on 200 activity categories: (a) untrimmed
classification and (b) detection. We focus on the former
which involves predicting the activities present in a long
video. Accounting for YouTube blocks and deleted videos,
we downloaded 9942 training, 4874 validation, and 5001
test videos.

2. Recognition Framework

In this section, we present our multi-stream action recog-
nition framework based on: (i) Fisher vector encoded MBH
features, (ii) C3D fc7 features, (iii) GoogLeNet pool5 fea-
tures, (iv) VGG16 pool5 features, and (v) ResNet-101 soft-
max scores. The first two modules are clip-based while the
last three are frame-based. An overview of the framework
can be found in Fig. 1.

Predictions

clip

GoogleNet

C3D

clip
MBH

frame
VGG16

frame
ResNet=101

frame

fc7

pool5

softmax scores

pool5
SVM

SVM

SVM

SVM

Late
Fusion

Figure 1. Multi-stream framework. We combine five modules
using late fusion to obtain the final prediction scores. The MBH
module is hand-crafted, while the rest are based on deep networks.
For ResNet-101, we directly use the softmax scores since this per-
forms better than using the extracted features.

2.1. MBH Features

Improved dense trajectories (IDT) [15] are state-of-the-
art hand-crafted features for modeling temporal information
in videos, and the motion boundary histogram (MBH) fea-
tures are the best performing component of the IDT fea-
tures. We use the provided1 Fisher vector encoded MBH
features [13, 9], whose dimension is 65536 for each video,
to train a linear, one-versus-rest support vector machine
(SVM) classifier. We fix the SVM hyper-parameter C to
100 [2].

2.2. C3D

In [14], the authors show that 2D ConvNets “forget” the
temporal information in the input signal after each convo-
lution. They therefore propose 3D ConvNets, which ana-
lyze sets of contiguous video frames organized as clips, and
show its effectiveness at learning spatio-temporal features
in video volume data analysis problems.

We therefore adopt fc7 features2 extracted from a pre-
trained C3D model as an additional signal. The network
is not fine-tuned on the ActivityNet challenge dataset. The
inputs to the C3D model are 16 frame clips with 50% over-
lap and the outputs are 4096 dimension feature activations.

1The MBH features are provided by the organizers.
2The C3D extracted fc7 features are provided by the organizers.

1
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Rank Organization mAP Top-1

7 USTC* 84.0 79.6
8 UC Merced 83.1 78.4
9 Xerox Research 82.6 78.5

10 Oxford Brookes 82.5 76.7
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Rank Organization mAP Top-1

6 Zhejiang University 84.1 83.3
7 USTC* 84.0 79.6
8 UC Merced 83.1 78.4
9 Xerox Research 82.6 78.5

10 Oxford Brookes 82.5 76.7
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6. Zhejiang University
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Figure 1. Multi-stream CNN fusion. Lf , LR and LF represents
the temporal length of each network.

different networks to the same frame, so they can aligned
temporally. And we concatenate the output feature map of
last pooling layer to make the information spatially aligned,
since the output of convolutional feature maps preserves
spatial structure of input, as shown in Figure 1.

With both spatially and temporally aligned, these CNNs
are able to describe local latent concepts from multiple as-
pects, like appearance, motion, etc. With spatial pyramid
pooling [20], these networks generate 50 d-dimensional de-
scriptors for each frame, where d stands for the sum of num-
ber of output channels of each network. We balance the
weights of different networks by dividing standard devia-
tion of each network. We also observe similar work of fus-
ing two-stream CNNs on feature maps [4]. The difference is
after fusing two networks, [4] used 3D convolution to gen-
erate representation for videos, while we use bag-of-words
encoding on CNN feature maps.

2.2. Feature encoding and classification

To generate video representation, we first apply PCA-
whitening on each descriptor to reduce the dimensionality
and whiten the descriptors. We use VLFeat [15] implemen-
tation of Vector of Locally Aggregated Descriptor (VLAD)
encoding [1, 20] to encode CNN feature maps, with power
normalization, intra normalization and L2 normalization as
post-processing. In our experiments, we use VLAD-k with
k = 5, which assigns each descriptor into the nearest 5 cen-
ters. At last, one-vs-rest linear SVMs are trained for each
class, as the final classifier.

3. Experiments

3.1. Datasets

We test our system on two datasets: UCF101 and Activ-
ityNet validation set.

UCF101 [12] is a commonly used dataset for action
recognition in real-world videos, which contains 13, 320
videos from 101 action categories. There are 3 standard
splits of these 13, 320 videos, and the average of accu-
racy over 3 splits is commonly reported. These videos are
temporally trimmed, which means they are relatively short
without background video clips.

ActivityNet [3] is a much larger dataset than UCF101
for action recognition in videos. It contains about 10, 000,
5, 000 and 5, 000 videos in the training, validation and test-
ing set. These videos are temporally untrimmed, which
means Some parts of these videos have no actions, and the
temporal length can be much longer than videos in UCF101.
Videos analysis in untrimmed videos are much more chal-
lenging than in trimmed videos. The performance on Ac-
tivityNet datasets is measured by interpolated mean average
precision (mAP) and top-k accuracy with k = 1 or 3.

3.2. Experiment settings

We use the off-the-shelf OpenCV implementation TVL-
1 algorithm to compute the optical flows. We use multi-
ple CNNs to extract the visual feature. For RGB nets, we
use ImageNet [2] pretrained Inception-BN network [5] and
Sports-1M [6] pretrained C3D network [13]. The architec-
ture of 2D flow network is VGG16 network [11]. Optical
flow networks are trained on UCF101 dataset [12], initial-
ized from corresponding RGB network as suggested in [18].
We also finetune these networks on the ActivityNet training
set, but we don’t have enough time for full finetuning. In all
of our experiments, the temporal stride t0 is set to 8 frames.
The temporal length Lf , LR, LF of Flow CNN, RGB3D

CNN and Flow3D CNN are 10, 16 and 16, respectively.
While encoding descriptors, we set the dimensionality of

descriptors after PCA-whitening to 512 ⇥Nc, where Nc is
the number of networks being used. We set C = 100 in our
SVM training. For the validation set, we train SVMs with
videos in the training set. For testing set, we train SVMs
with videos in both the training set and the validations set.

3.3. Experiment results

3.3.1 UCF101

We first test our system on UCF101 dataset. The results are
shown in Table 1 and Table 2. Across single stream, 10-
frame stacked flow network achieves the best performance.
For any two streams, 2D RGB net and 2D Flow net achieves
the best performance. Comparing to the state of the arts, our
best result can outperform others on the average accuracy

2
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Rank Organization mAP Top-1

5 University of Tokyo 86.4 80.4
6 Zhejiang University 84.1 83.3
7 USTC* 84.0 79.6
8 UC Merced 83.1 78.4
9 Xerox Research 82.6 78.5

10 Oxford Brookes 82.5 76.7
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5. University of Tokyo
•  Two stream network
•  ResNet fine-tuned in ActivityNet
•  Only action segments were used in training
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Rank Organization mAP Top-1

4 UTS II* 87.1 84.9
5 University of Tokyo 86.4 80.4
6 Zhejiang University 84.1 83.3
7 USTC* 84.0 79.6
8 UC Merced 83.1 78.4
9 Xerox Research 82.6 78.5

10 Oxford Brookes 82.5 76.7
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Rank Organization mAP Top-1

3 MSRA 91.9 86.6
4 UTS II* 87.1 84.9
5 University of Tokyo 86.4 80.4
6 Zhejiang University 84.1 83.3
7 USTC* 84.0 79.6
8 UC Merced 83.1 78.4
9 Xerox Research 82.6 78.5

10 Oxford Brookes 82.5 76.7
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3. MSRA
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Rank Organization mAP Top-1

2 UTS 92.4 87.7
3 MSRA 91.9 86.6
4 UTS II* 87.1 84.9
5 University of Tokyo 86.4 80.4
6 Zhejiang University 84.1 83.3
7 USTC* 84.0 79.6
8 UC Merced 83.1 78.4
9 Xerox Research 82.6 78.5

10 Oxford Brookes 82.5 76.7
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2nd Place – Untrimmed Video 
Classification Task

•  TEAM: UTS
•  Prize: 1 Commemorative Plaque 
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Rank Organization mAP Top-1
1 CUHK&ETHZ&SIAT 93.2 88.1
2 UTS 92.4 87.7
3 MSRA 91.9 86.6
4 UTS II* 87.1 84.9
5 University of Tokyo 86.4 80.4
6 Zhejiang University 84.1 83.3
7 USTC* 84.0 79.6
8 UC Merced 83.1 78.4
9 Xerox Research 82.6 78.5

10 Oxford Brookes 82.5 76.7
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1st Place – Untrimmed Video 
Classification Task

•  TEAM: CUHK & ETHZ & SIAT
•  Prizes: 1 GTX TITAN X, 1 Commemorative 

Plaque 
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logo has to be used at 100% black or white

Detection Results

ACTIVITYNETACTIVITYNET

Only in special cases, when there is no option to use colors, the 
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Task II: Activity detection
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Activity:

Time progress

Raking 
Leaves



ACTIVITYNET

Task II: Activity detection
•  Metric: temporal mean Average Precision
–  temporal Intersection over Union (tIoU)

–  Predictions with tIoU>0.5 are marked as true positive
–  Only one prediction must match the ground-truth
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Re-train/
Multimodal
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Rowing
Tug of war

Peeling potatoes
Painting fence

Canoeing

Powerbocking
Beer pong

Drinking coffee
Shot put

Playing badminton

Performance (mAP %)
10 50 90
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Qualitative Results
•  Videos where all methods do well
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Ground-truth Time progress

Badminton Shotput Drinking coffee
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Qualitative Results
•  Videos where all methods fail

60	  

Ground-truth Time progress

Peeling potatoes Rowing Tug of war
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Rank Organization mAP

6 UPC 22.3
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6. UPC

UPC at ActivityNet Challenge 2016

Alberto Montes, Santiago Pascual de la Puente, Amaia Salvador, Ignasi Esquerra and Xavier Giró-i-Nieto,
Universitat Politècnica de Catalunya

{al.montes.gomez, santi.pdp}@gmail.com, {amaia.salvador, ignasi.esquerra, xavier.giro}@upc.edu

Abstract

This notebook describes our proposed solution for both
the classification and detection tasks of the ActivityNet
Challenge 2016. We propose a system consisting of two
different stages. First, the videos are organized in 16-frame
clips, for which we individually extract both audio and vi-
sual features. Visual features were extracted from a pre-
trained 3D convolutional network (C3D), while MFCC co-
efficients were extracted for audio. On top of these features,
we train a recurrent neural network to predict the activity
sequence of each video at the granularity of the 16-frames
clip.

1. Introduction

Recognizing activities in videos has become a hot topic
over the last years due to the continuous increase of video
cameras devices and online repositories. This large amount
of data requires an automatic indexing to be accessed after
capture. The recent advances in video coding, storage and
computational resources have boosted research in the field
towards new and more efficient solutions for organizing and
retrieving video content.

The techniques described in this document have been
tested on the video dataset defined by the ActivityNet Chal-
lenge 2016. This dataset contains 640 hours of video and 64
million frames. The ActivityNet dataset offers untrimmed
videos, which means that has temporal annotations for the
given ground truth class labels. Nearly half of the video
hours (311 hours of video) contain a label among the 200
activity classes defined by the dataset. This dataset also
give the temporal regions where activities occurs. For the
details of the ActivityNet dataset please refer to the dataset
description[1].

The architecture proposed is composed of two stages.
First, we extract spatio-temporal features with a 3D con-
volutional neural network, which exploits temporal corre-
lations in short video clips. The second stage of our pro-
posed architecture is a Recurrent Neural Network (RNN),
which exploits long term dependencies in the feature se-

Figure 1. The proposed architecture. The network receives as input
the features from the 3DS network, and trains an LSTM to output
the class probability for each video clip.

quence. The recurrent neural network generates a sequence
of predictions that naturally allows the temporal localization
of the activities within a video shot.

2. Architecture

This section explains in detail the two stages of our pro-
posed architecture, which is depicted in Figure 1. This ar-
chitecture allows solving both the classification and detec-
tion tasks formulated in the ActivityNet challenge.

2.1. Audiovisual Feature Extraction

In order to extract spatio-temporal correlations on short
clips of 16 frames, we adopted the C3D features proposed in
[5], which have been proven to be well suited for video clas-
sification tasks [4] [6]. We use the network proposed in the
original C3D network which was trained with the Sports1M
dataset[3] and extract the features from the first fully con-
nected layer (fc6), which was chosen based on the previ-
ous results reported in [5]. For visual feature extraction, the
videos were split in clips of 16 frames each without overlap,

1
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Rank Organization mAP

5 POSTECH* 22.8

6 UPC 22.3
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Rank Organization mAP

4 University of Tokyo 26.8

5 POSTECH* 22.8

6 UPC 22.3
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4. University of Tokyo
•  Two stream network
•  ResNet fine-tuned in ActivityNet
•  Only action segments were used in training
•  Sliding window

65	  



ACTIVITYNET66	  

Rank Organization mAP

3 University of Maryland 28.8
4 University of Tokyo 26.8

5 POSTECH* 22.8

6 UPC 22.3
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3. University of Maryland

Figure 1. Framework for our approach. Short chunks of a video
are given to a multi-stream network (MSN) to create a representa-
tion for each chunk. The sequence of these representations is then
given to a bi-directional LSTM, which is used to predict the action
label, Ai. Details of the multi-stream network are shown in Fig. 2.

portance of each of these components using two different
datasets. The first is the MPII Cooking 2 Dataset [21], and
the second is a new dataset we introduce containing over-
head videos of people shopping from grocery-store shelves.
Our results on the MPII Cooking 2 Dataset represent a sig-
nificant improvement over the previous state of the art.

Our work includes the following novel contributions:
• We demonstrate the effectiveness of a bi-directional

LSTM for the action detection task. It should be noted
that although LSTMs have been used before for action
recognition and sentence generation, we are the first
to analyze the importance of LSTMs for action detec-
tion. Furthermore, since our LSTM layer is trained on
full-length videos containing multiple actions (not just
trimmed clips of individual actions), it can learn inter-
actions among temporally neighboring actions.

• We train a multi-stream convolutional network that
consists of two 2-stream networks, demonstrating the
importance of using both full-frame and person-centric
cropped video. We use pixel trajectories rather than
stacked optical flow as input to the motion streams,
leading to a significant improvement in results.

• We introduce a new action detection dataset, which we
release to the community with this publication.

2. Related Work

Early work that can be considered action detection in-
cludes methods that detect walking people by analyzing

Figure 2. Figure depicting our multi-stream network (MSN). The
multi-stream network uses two different streams of information
(motion and appearance) for each of two different spatial crop-
pings (full-frame and person-centric) to analyze short chunks of
video. One network (CNN-T) computes features on pixel trajecto-
ries (motion), while the other (CNN) computes features on RGB
channels (appearance).

simple appearance and motion patterns [26, 2]. Several al-
gorithms have been proposed since then for detecting ac-
tions using space time interest points [33], multiple instance
learning [9], or part-based models [25, 10]. By adding an-
other dimension (time) to object proposals, action proposals
have also been used for detection [11, 32].

Until recently, the standard pipeline for most video anal-
ysis tasks such as action recognition, event detection, and
video retrieval was to compute hand-crafted features such as
Histogram of Oriented Gradients (HOG), Motion Boundary
Histogram (MBH), and Histogram of Optical Flow (HOF)
along improved dense trajectories [28], create a Fisher vec-
tor for each video clip, then perform classification using
support vector machines. In fact, shallow architectures us-
ing Fisher vectors still give state-of-the-art results for ac-
tion/activity recognition [17, 29, 21]. Wang et al. [29]
showed that results improved when hand-crafted features
were replaced by deep features that were computed by con-
volutional neural networks whose inputs were images and
stacked optical flow along trajectories. In [22], a two-stream
network was proposed in which video frames and stacked
optical flow fields (computed over a few frames) were fed
to a deep neural network for action recognition. A similar
architecture was used for spatial localization of actions [5]
in short video clips. However, these networks did not learn
long-term sequence information from videos.

Since recurrent neural networks can learn long-term se-
quence information in a data-driven fashion, they have re-
cently gained traction in the action recognition community

67	  

A Multi-Stream Bi-
Directional Recurrent
Neural Network  for Fine 
Grained Action Detection.
Bharat et al. CVPR 2016
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Rank Organization mAP

2 Oxford Brookes 36.4

3 University of Maryland 28.8
4 University of Tokyo 26.8

5 POSTECH* 22.8

6 UPC 22.3
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2nd Place – Activity Detection Task

•  TEAM: Oxford Brookes
•  Prize: 1 Commemorative Plaque 
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Rank Organization mAP

1 UTS 42.5

2 Oxford Brookes 36.4

3 University of Maryland 28.8
4 University of Tokyo 26.8

5 POSTECH* 22.8

6 UPC 22.3
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1st Place – Activity Detection Task

•  TEAM: UTS
•  Prizes: 1 GTX TITAN X, 1 Commemorative 

Plaque 
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What lessons have we learned?
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Metric for Detection
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Metric for Detection

77	  

mAP @ 0.5:0.05:0.95mAP @ 0.5

Anonymized submissions 

5

25

45

Pe
rfo

rm
an

ce
 (m

AP
 %

)



ACTIVITYNET

Metric for Detection
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•  In the next challenge, we will average the AP 
across multiple tIoU thresholds



ACTIVITYNET79	  

0 0.5 1.0
Annotation length / Video duration (Coverage)

6.6

13.2

19.8
%

 o
f i

ns
ta

nc
es



ACTIVITYNET

Ideas for the Future

80	  



ACTIVITYNET

New Activity Proposal Task
•  Retrieve temporal (or spatiotemporal) segments 

that are likely to contains actions
Ground-truth
Temporal Proposal
Time progress
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New Activity Proposal Task
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Bigger Classification Task
•  Next classification task will include:
–  ~1000 action classes
–  >500 samples per class
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Extending to Spatiotemporal
•  Possible task: spatiotemporal proposal prediction

•  Possible task: spatiotemporal detection
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Possible dataset: Hollywood2Tubes
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•  Proposals on test set of 
Hollywood2

•  Covers interaction, co-
occurrence and context

•  Much harder than UCF 
sports and UCF 101
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Feedback
Please feel free to contact us at any time with any 
feedback you have!

•  Additional tools?
•  Additional annotations?
•  Annotation refinement?
•  Visualization code?
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Universitat Politècnica de Catalunya
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Abstract

This notebook describes our proposed solution for both
the classification and detection tasks of the ActivityNet
Challenge 2016. We propose a system consisting of two
different stages. First, the videos are organized in 16-frame
clips, for which we individually extract both audio and vi-
sual features. Visual features were extracted from a pre-
trained 3D convolutional network (C3D), while MFCC co-
efficients were extracted for audio. On top of these features,
we train a recurrent neural network to predict the activity
sequence of each video at the granularity of the 16-frames
clip.

1. Introduction
Recognizing activities in videos has become a hot topic

over the last years due to the continuous increase of video
cameras devices and online repositories. This large amount
of data requires an automatic indexing to be accessed after
capture. The recent advances in video coding, storage and
computational resources have boosted research in the field
towards new and more efficient solutions for organizing and
retrieving video content.

The techniques described in this document have been
tested on the video dataset defined by the ActivityNet Chal-
lenge 2016. This dataset contains 640 hours of video and 64
million frames. The ActivityNet dataset offers untrimmed
videos, which means that has temporal annotations for the
given ground truth class labels. Nearly half of the video
hours (311 hours of video) contain a label among the 200
activity classes defined by the dataset. This dataset also
give the temporal regions where activities occurs. For the
details of the ActivityNet dataset please refer to the dataset
description[1].

The architecture proposed is composed of two stages.
First, we extract spatio-temporal features with a 3D con-
volutional neural network, which exploits temporal corre-
lations in short video clips. The second stage of our pro-
posed architecture is a Recurrent Neural Network (RNN),
which exploits long term dependencies in the feature se-

Figure 1. The proposed architecture. The network receives as input
the features from the 3DS network, and trains an LSTM to output
the class probability for each video clip.

quence. The recurrent neural network generates a sequence
of predictions that naturally allows the temporal localization
of the activities within a video shot.

2. Architecture
This section explains in detail the two stages of our pro-

posed architecture, which is depicted in Figure 1. This ar-
chitecture allows solving both the classification and detec-
tion tasks formulated in the ActivityNet challenge.

2.1. Audiovisual Feature Extraction

In order to extract spatio-temporal correlations on short
clips of 16 frames, we adopted the C3D features proposed in
[5], which have been proven to be well suited for video clas-
sification tasks [4] [6]. We use the network proposed in the
original C3D network which was trained with the Sports1M
dataset[3] and extract the features from the first fully con-
nected layer (fc6), which was chosen based on the previ-
ous results reported in [5]. For visual feature extraction, the
videos were split in clips of 16 frames each without overlap,

1



ending up with a total of 4 million clips. Videos clips were
resized to 112x112 pixels for feature extraction, in order to
match the original input size for which the C3D network
was originally trained. This way, for each 16-frame clip,
we obtain a visual feature of dimension 4096.

In addition to the video features, audio features were also
explored as additional information for activity recognition.
The audio features chosen were 40 MFCC coefficients (20
MFCC + 20 Delta-MFCC coefficients) for 20ms window
length and 10ms window shift. In addition 8 Spectral co-
efficients for global audio track where added. The MFCC
coefficients were grouped together to match video features
in length and duration. The grouping of the MFCC coeffi-
cients was made computing the mean and the standard de-
viation. In total 88 audio features were computed. They
where used in addition to the visual features in order to test
if this could improve results. When used it, the audio fea-
tures were concatenated to the video features out of the C3D
before training the recurrent neural network.

2.2. Recurrent Neural Network

As a second stage, a Recurrent Neural Network aims
at exploiting the long term dependencies in time of the
extracted audiovisual features. Our RNN is based on
LSTM cells, which control the flow of information that
goes through them with gating mechanisms, retaining the
necessary information for long periods of time, making
them exploit the long-term dependencies better than clas-
sic RNNs[2]. We also proposed a sequence to sequence
approach, where the model is fit with the video features as
a sequence and returns a sequence of the activity class for
each clip.

In addition, during our tests we explored an architecture
with feedback, where the output predicted at the previous
time step is added as an input to the LSTM. This approach
aimed at smoothing the output sequence of predictions.

3. Experiments

The presented model was trained with the training parti-
tion provided by the ActivityNet challenge, and the results
reported were obtained based on the predictions over the
validation set.

3.1. Classification Task

For the classification task and knowing that each video
has a single activity on it, we obtain the activity probabili-
ties for the whole video as the mean of each activity output
through the whole video sequence. Then, we get the maxi-
mum among all classes (excluding the background) and sort
them by probability. Testing different architectures, we ob-
tained the results given on Table 1 and Table 2. The best
configuration was obtained with a single layer of LSTM

Architecture mAP Hit@3
3 x 1024-LSTM 0.5635 0.7437
2 x 512-LSTM 0.5492 0.7364
1 x 512-LSTM 0.5938 0.7576

Table 1. Results for classification task comparing different deep
architectures. All values with only video features on the validation
dataset.

Features used mAP Hit@3
Only video 0.5938 0.7576
Video w/ audio 0.5755 0.7352
Only video & feedback 0.5210 0.6982
Video w/ audio & feedback 0.5652 0.7319

Table 2. Results for classification task with the model made by
one 512-LSTM. Compare between features and feedback on the
validation dataset.

α k = 0 k = 5 k = 10
0.2 0.207324 0.225138 0.221362
0.3 0.198542 0.220776 0.221001
0.5 0.190353 0.219376 0.213029

Table 3. mAP with an IOU threshold of 0.5 over validation dataset.
Here there is a comparison between values on post processing.

with 512 neurons using only video features as input, with-
out audio features nor feedback from the previous timestep.

3.2. Detection Task

In order to solve the detection task, we post-process the
output of the network with the assumption that videos only
contain a single activity. This way, in this task we only focus
on detecting the class with the highest probability through-
out the video. To achieve this, we compute the activity
probability as the sum of probabilities from all the activi-
ties except the background. A threshod α was learned and
then applied along the sequence of predictions over the 16-
frames clips, so that only the predictions with a probability
over the threshold were considered. The best results were
obtained with α = 0.2.

Finally, a post-processing was required to improve the
temporal localization of the activities. A mean filter with a
window of k = 10 at the output of our recurrent network
provided the best results, as seen in Table 3. Figure 2 shows
an example of the output of our model.
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1. Overview
This is an implementation of MSB-RNN [1] without

tracking. VGG is replaced by ResNet-101. Detection seg-
ments within 10 seconds are merged together. Recogni-
tion is performed using detection outputs. Score for a class
present in a video is obtained by max pooling scores of de-
tected clips. If no clip is detected in the video, an arbitrary
class is picked and 0 score is assigned to it. The method was
only trained on the training set and parameters were tuned
on the validation set.

1.1. References
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Abstract

In this document, we describe our method for untrimmed action recognition whose results have been
submitted to the ActivityNet Challenge 2016. Our method is based on data-augmentation and feature fusion
techniques for video-level Dense Trajectories and C3D features, audio-level MFCC features, and frame-level
ImageNet features.

1 Description
Our method is based on the improved Dense Trajectories (iDT) pipeline of Wang & Schmid [1]. However,
we employ modifications to both the beginning (data preprocessing) and end (feature fusion) of this pipeline.
First, we preprocess the videos from the 1.3 version of the ActivityNet to reduce their size, downscaling them
to 244 horizontal lines while keeping the aspect ratio. Then, we generate extra versions of each video using
frame-skipping and horizontal mirroring. Afterwards, we proceed to extract information from both their audio
and video streams.

From the audio stream, we extract a set of 40-dimensional MFCC audio features for each video. From
the video stream, we extract Trajectory shape (Traj) [7], HOG [8], HOF [9], horizontal and vertical MBH
components [7] descriptor along trajectories obtained by median filtering dense optical flow, using the same
parameters given in [1]. We subsample the trajectories from each transformed version of each video, keeping
only 10% of the originally extracted trajectory descriptors. We apply the RootSIFT normalization [3] (`1
normalization followed by square-rooting) to all video descriptors.

Next, we randomly sample 256,000 trajectories and MFCC vectors from the pool of training videos to learn
the vocabularies needed for feature encoding. Before learning the GMMs, we apply PCA to the descriptors,
reducing their dimensionality by a factor of two. Afterwards, we concatenate the PCA-transformed video
descriptors with their respective (x, y, t) ∈ R3 coordinates.

We learn one separate GMM per descriptor channel. Both of those models are learned using the free
implementations in the Scikit-learn [13] set of machine learning tools for Python. After the vocabularies
have been created, we use them to create Fisher Vector (FV) [14, 15] encodings for each local descriptor in
each descriptor channel, combining these encodings into a per-channel, video-level representation using sum-
pooling. We then apply Power normalization [15] (signed-square-rooting followed by `2 normalization) to
those per-channel FVs. Next, we concatenate all channels together and reapply this same normalization [2].

Finally, we learn separate probability-calibrated SVMs for a) iDT+MFCC Fisher Vectors b) video-level
C3D features b) image-level ImageNet features (the last two being gathered from the challenge website). We
concatenate the probability outputs of each of those SVMs and use it as a global feature vector, learning a
fourth SVM on top of those features, and use this final SVM to predict the final scores for each video.

1
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[11] Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for
action recognition. IJCV 103 (2013) 60–79

[12] Wang, H., Oneata, D., Verbeek, J., Schmid, C.: A robust and efficient video representation for action
recognition. IJCV (July 2015) 1–20

[13] Pedregosa, F., Varoquaux, G.: Scikit-learn: Machine Learning in Python. J. Mach. . . . 12 (2011) 2825–
2830

[14] Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: CVPR.
(2007)

[15] Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher kernel for large-scale image classification.
In: ECCV. (2010)

[16] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv1412.6980 (December 2014)

[17] Chollet, F.: keras. https://github.com/fchollet/keras (2015)

[18] Theano Development Team: Theano: A Python framework for fast computation of mathematical expres-
sions. arXiv e-prints abs/1605.02688 (May 2016)

[19] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks (2010)

https://github.com/fchollet/keras


Untrimmed Classification for Activity Detection:
submission to ActivityNet Challenge

Gurkirt Singh Fabio Cuzzolin
Artificial Intelligence and Vision research group

Oxford Brookes University
{15056568,fabio.cuzzolin}@brookes.ac.uk

Abstract

Current state-of-the-art human activity recognition is fo-
cused on the classification of temporally trimmed videos
in which only one action occurs per frame. We propose
a simple, yet effective, method for the temporal detection
of activities in temporally untrimmed videos with the help
of untrimmed classification. Firstly, our model predicts the
top k labels for each untrimmed video by analysing global
video-level features. Secondly, frame-level binary classi-
fication is combined with dynamic programming to gener-
ate the temporally trimmed activity proposals. Finally, each
proposal is assigned a label based on the global label, and
scored with the score of the temporal activity proposal and
the global score. Ultimately, we show that untrimmed video
classification models can be used as stepping stone for tem-
poral detection.
1. Introduction

Emerging real-world applications require an all-round
approach to the machine understanding of human be-
haviour, which goes beyond the recognition of simple, iso-
lated activities from video.

As a step towards this ambitious goal, in this work we
address the problem of detecting the temporal bounds of
activities in temporally untrimmed videos.

2. Methodology
Whereas (i) video-level features are used for untrimmed

video classification task, (ii) frame-level features are used
for activity proposal generation and scoring. Finally, (iii) a
video’s classification score is augmented with the scores of
the activity proposals for proposal classification.

2.1. Features

We make use of the features provided on Activi-
tyNet’s [2] web page1.

1http://activity-net.org/challenges/2016/download.html

2.1.1 Video-level features

ImageNetShuffle features are video-level features gener-
ated by [4] using a Google inception net (GoogLeNet [5]).
CNN features are extracted from the pool5 layer of
GoogLeNet [5] at a two frames per second rate. Frame-
level CNN features are mean pooled to construct a repre-
sentation for the whole video. Mean pooling is followed by
L1-normalisation.

We train a one-versus-rest linear SVM for each class,
and use the resulting SVM scores Si = {si1, ..., sic, ...siC},
where C is number of classes, as INS features.

Motion Boundary Histogram (MBH) features are
generated with the aid of the improved trajectories [7] exe-
cutable2. We train another battery of one-versus-rest SVMs
using a linear kernel on the MBH features, and use the re-
sulting SVM scores Sm = {sm1 , ..., smc , ...smC } as global
video features.

2.1.2 Frame level features

C3D Features features are generated at 2 frames per sec-
ond using a C3D network [6] with temporal resolution of
16 frames. Once again we train a frame level one-versus-
rest SVM classifier for each activity class using a linear
kernel. The scoring of frame t is defined by the resulting
SVM scores: S3

t = {s31, ..., s3c , ...s3C}. Finally, we perform
mean pooling along the frames for each class to get another
score vector S3, which is used for video classification.

2.2. Untrimmed video classification

Untrimmed video classification is achieved by fusing all
video level scores using a linear SVM as a meta classifier.
Video level scores (Si, Sm and S3) are stacked up to make a
single score vector. A linear SVM is trained on the training
set of stacked scores, and evaluated on the validation and
testing sets. The output scores Ss outputted by the meta
SVM are normalised by dividing them by the sum of the

2http://lear.inrialpes.fr/people/wang/improved trajectories
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top k scores. The parameter k was cross-validated on the
validation set and set to 3 – it contributes to improve the
mean average precision metric.

We believe that, since SVM scores are not probabilities,
normalisation by top k scores is required to be able to com-
pare them across all videos.

2.3. Activity detection in untrimmed videos

Activity proposals are detected by (i) training a binary
random forest (RF) classifier [1] for each class on the frame-
level C3D features, and (ii) casting activity proposal gener-
ation as an optimisation problem [3], which makes use of
these binary decisions.

2.3.1 Binary random forest classification

The binary RF classifies each frame into a negative (i.e. no
activity taking place) or a positive bin (i.e. something is
happening). The positive score of a frame t is denoted by
srt . Temporal trimming is then achieved by dynamic pro-
gramming as follows.

2.3.2 Activity proposal generation

Given the frame-level scores {srt , t = 1, ..., T} for a video
of length T , we want to assign to each frame a binary label
lt ∈ {1, 0} (where zero represents the ‘background’ or ‘no-
activity’ class), which maximises:

E(L) =

T∑
t=1

srt − λ
T∑

t=2

ψl (lt, lt−1) , (1)

where λ is a scalar parameter, and the pairwise potential ψl

is defined as: ψl(lt, lt−1) = 0 if lt = lt−1, ψl(lt, lt−1) = α
otherwise, (where α is a parameter which we set by cross
validation). This penalises labellings L = {l1, ..., lT }
which are not smooth, thus enforcing a piecewise constant
solution. All contiguous sub-sequences form the desired ac-
tivity proposal (which can be as many as there are instances
of activities). Each activity proposal is assigned a global
score Sa equal to the mean of the scores of its constituting
frames. This optimisation problem can be efficiently solved
by dynamic programming [3]. It can easily be extended for
simultaneous detection and classification [3].

2.3.3 Overall activity detection

The top (in this case 2) activity proposals in each video
are assigned the label of top untrimmed classification class
(§2.2). For example, if c = 10 is the top class for the video
with score Ss

10, and a is the top activity proposal with score
Sa (§2.3.2), then a detection of class 10 is flagged with
the temporal bounds determined by activity proposal a and
score Sa

10 = Ss
10 ∗ Sa.

3. Implementation
We used the precomputed features provided by the com-

petition organisers. We used SciKit-learn3 for linear SVM
and random forest Implementation. We will make the activ-
ity proposal generation code available 4.

4. Results
We report results for untrimmed classification and activ-

ity detection on ActivityNet [2]. We use the same evaluation
setting as described in challenge [2].

4.1. Untrimmed classification

Validation Set Testing Set
Method TOP-1 TOP-3 mAP TOP-1 TOP-3 mAP
Caba et al. [2] - - 42.50% - - 42.20%
proposed 76.89% 89.25% 81.99% 77.08% 89.38% 82.49%

Table 1: Untrimmed classification performance on valida-
tion and testing set in percentage.

4.2. Activity detection

TIoU threshold δ = 0.1 0.2 0.3 0.4 0.5
Validation-Set Caba et al. [2] 12.50% 11.90% 11.1% 10.40% 09.70%
Validation-Set proposed 52.12% 47.94% 43.50% 39.22% 34.47%
Testing-Set proposed - - - - 36.40%

Table 2: Activity detection performance on validation and
testing set. Quantity δ is the Temporal Intersection over
Union (TIoU) threshold.

5. Conclusion and Future Work
We show that activity detection can be achieved

via untrimmed video classification. Our dynamic
programming-based approach is efficient, and has shown a
clear potential for generating good quality activity proposal.

The approach can be easily extended for simultane-
ous detection and classification without requiring classifi-
cation scores at video level, which open ups the opportu-
nity for online activity classification, detection and predic-
tion.
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Abstract

We describe our system for ActivityNet Challenge
2016 [3] in this report. In general, we use multiple deep
learned features to depict the visual information in videos.
Each of the convolutional neural networks (CNNs) captures
different aspects of visual information. We try to exploit the
internal structural information across different CNNs. In
the end, the one-vs-rest linear SVM is used as the final clas-
sifier.

1. Introduction

Action recognition is becoming an attracting problem in
computer vision, especially recognizing human actions in
untrimmed real-world videos. The research about video ac-
tion recognition also helps in other tasks of video analysis
and video understanding, such as video retrieval and video
recommendation.

Hand-crafted features like improved dense trajecto-
ries [16] with HOG, HOF and MBH achieved good perfor-
mance and are being widely used in video analysis. With
the success of convolutional neural networks (CNNs) on
image recognition [7], deep learning methods have become
popular in various areas in computer vision. Many work
tried to use CNN to generate better representation. Many
of them are proven successful practices [10, 13] by exploit
more motion information with CNNs. Some other work
tried to encode CNN features to better represent video con-
tents, like VLAD encoding [20] and recurrent neural net-
works (RNNs) [8].

In this report, we use CNN encoding with richer appear-
ance and motion feature, to explore how much the improve-
ment we are able to achieve. We present our system for
ActivityNet Challenge 2016 [3] classification task in this
report. Our system consists of multiple CNNs, which cap-
tures visual information from multiple aspects of video data.

∗This work was done when Ke Ning was visiting Michigan State Uni-
versity.

Then, VLAD encoding is applied to the extracted features
from the last pooling layer of these CNNs. In the end, we
train one-vs-rest linear SVM for each class as then final
classifier.

2. System description
Our system consists of three parts: deep feature extrac-

tion, feature encoding and classification. We describe these
three parts of our system in detail in this section.

2.1. Deep learned feature

Many recent work used two-stream CNNs [10, 17, 18,
19] to extract appearance and motion visual information
from video frames and stacked optical flows, and achieved
good performance for action recognition. In general, two-
stream CNNs can capture the appearance and motion in-
formation in videos, which simulate the ventral stream (ob-
ject appearance) and dorsal stream (object motion) in the
recognition process of human brain. Two popular fusion
method are early fusion (representation fusion) and late fu-
sion (score fusion). These two fusion methods fuse infor-
mation from different models at the last classification stage,
which might miss the internal structural information cross
different networks.

To better exploit the visual information in videos, we em-
ploy C3D network [13] and C3D flow network [14], which
can describe the evolving of video frames and optical flows
over short time. 3D convolution and 3D pooling opera-
tions in C3D networks have more invariance over time, cap-
tures spatio-temporal information in videos from new as-
pects other then regular RGB network and stacked optical
flow network. In the following part of this report, we de-
note these two networks as RGB3D and Flow3D network,
respectively. We use visual feature on videos of these four
networks.

Since the visual information of different modalities are
highly correlated over both space and time, we would like
to describe local visual information with spatio-temporally
aligned networks. We apply CNNs on videos with tempo-
ral stride t0, and make the temporal center of inputs for
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Figure 1. Multi-stream CNN fusion. Lf , LR and LF represents
the temporal length of each network.

different networks to the same frame, so they can aligned
temporally. And we concatenate the output feature map of
last pooling layer to make the information spatially aligned,
since the output of convolutional feature maps preserves
spatial structure of input, as shown in Figure 1.

With both spatially and temporally aligned, these CNNs
are able to describe local latent concepts from multiple as-
pects, like appearance, motion, etc. With spatial pyramid
pooling [20], these networks generate 50 d-dimensional de-
scriptors for each frame, where d stands for the sum of num-
ber of output channels of each network. We balance the
weights of different networks by dividing standard devia-
tion of each network. We also observe similar work of fus-
ing two-stream CNNs on feature maps [4]. The difference is
after fusing two networks, [4] used 3D convolution to gen-
erate representation for videos, while we use bag-of-words
encoding on CNN feature maps.

2.2. Feature encoding and classification

To generate video representation, we first apply PCA-
whitening on each descriptor to reduce the dimensionality
and whiten the descriptors. We use VLFeat [15] implemen-
tation of Vector of Locally Aggregated Descriptor (VLAD)
encoding [1, 20] to encode CNN feature maps, with power
normalization, intra normalization and L2 normalization as
post-processing. In our experiments, we use VLAD-k with
k = 5, which assigns each descriptor into the nearest 5 cen-
ters. At last, one-vs-rest linear SVMs are trained for each
class, as the final classifier.

3. Experiments
3.1. Datasets

We test our system on two datasets: UCF101 and Activ-
ityNet validation set.

UCF101 [12] is a commonly used dataset for action
recognition in real-world videos, which contains 13, 320
videos from 101 action categories. There are 3 standard
splits of these 13, 320 videos, and the average of accu-
racy over 3 splits is commonly reported. These videos are
temporally trimmed, which means they are relatively short
without background video clips.

ActivityNet [3] is a much larger dataset than UCF101
for action recognition in videos. It contains about 10, 000,
5, 000 and 5, 000 videos in the training, validation and test-
ing set. These videos are temporally untrimmed, which
means Some parts of these videos have no actions, and the
temporal length can be much longer than videos in UCF101.
Videos analysis in untrimmed videos are much more chal-
lenging than in trimmed videos. The performance on Ac-
tivityNet datasets is measured by interpolated mean average
precision (mAP) and top-k accuracy with k = 1 or 3.

3.2. Experiment settings

We use the off-the-shelf OpenCV implementation TVL-
1 algorithm to compute the optical flows. We use multi-
ple CNNs to extract the visual feature. For RGB nets, we
use ImageNet [2] pretrained Inception-BN network [5] and
Sports-1M [6] pretrained C3D network [13]. The architec-
ture of 2D flow network is VGG16 network [11]. Optical
flow networks are trained on UCF101 dataset [12], initial-
ized from corresponding RGB network as suggested in [18].
We also finetune these networks on the ActivityNet training
set, but we don’t have enough time for full finetuning. In all
of our experiments, the temporal stride t0 is set to 8 frames.
The temporal length Lf , LR, LF of Flow CNN, RGB3D

CNN and Flow3D CNN are 10, 16 and 16, respectively.
While encoding descriptors, we set the dimensionality of

descriptors after PCA-whitening to 512 ×Nc, where Nc is
the number of networks being used. We set C = 100 in our
SVM training. For the validation set, we train SVMs with
videos in the training set. For testing set, we train SVMs
with videos in both the training set and the validations set.

3.3. Experiment results

3.3.1 UCF101

We first test our system on UCF101 dataset. The results are
shown in Table 1 and Table 2. Across single stream, 10-
frame stacked flow network achieves the best performance.
For any two streams, 2D RGB net and 2D Flow net achieves
the best performance. Comparing to the state of the arts, our
best result can outperform others on the average accuracy
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by more than 1 percentage point.
Surprisingly, we observe that the performance of 4-

stream is slightly worse than that of three streams without
Flow3D. But multi-stream CNNs fusion can still result in a
reasonably good performance.

Features Average accuracy
RGB net 82.95%
Flow net 89.14%
RGB3D net 83.95%
Flow3D net 87.57%
RGB+Flow 93.02%
RGB+Flow3D 92.08%
RGB3D + Flow 92.74%
RGB3D + Flow3D 91.94%
RGB + Flow + RGB3D 93.87%
4-stream 93.51%

Table 1. The results on UCF101 dataset of different streams.

Methods Average accuracy
iDT+FV [16] 85.9%
iDT+HSV [9] 87.9%
Two-stream CNNs [10] 88.0%
TDD+FV [17] 90.3%
Very deep two-stream CNNs [18] 91.4%
Transformations [19] 92.4%
Conv. two-stream CNNs [4] 92.5%
Ours 93.87%

Table 2. Comparison with state of the arts on UCF101.

3.3.2 ActivityNet

We test our system on the validation set of ActivityNet.
Among all the single streams, the RGB network performs
the best. This could because for real-world videos, most of
the videos are in unconstrained environments. The back-
ground scene of videos can contain much information re-
lated to the action. Unlike the results in UCF101, the per-
formances of two flow networks are relatively low. This
could be due to the fact that these two networks are trained
on a small dataset (UCF101). The final result of finetuned
features is slightly worse than the one without finetuning.
By applying fusion on finetuned and unfinetuned model, the
result is slightly better.

As a comparison of different fusion methods, we applied
early fusion and late fusion over these four networks (de-
noted as EF and LF in Table 3). We can see that both
early fusion and late fusion have worse performance than
jointly encoded representation. Different from UCF101,
four streams outperforms three streams.

Features mAP Top-1
accuracy

Top-3
accuracy

RGB net 0.7628 77.35% 89.52%
Flow net 0.5948 60.80% 76.86%
RGB3D net 0.7084 72.02% 85.23%
Flow3D net 0.5780 59.45% 74.44%
RGB+Flow 0.7852 79.79% 91.18%
RGB+Flow3D 0.7824 79.55% 90.85%
RGB+Flow+RGB3D 0.7938 79.88% 91.71%
EF 4-stream 0.7910 79.88% 91.41%
LF 4-stream 0.7734 79.51% 90.67%
4-stream 0.7950 80.51% 91.94%
finetuned
4-stream 0.7925 80.23% 91.34%

Fusion 0.8031 81.07% 92.14%

Table 3. The results on the validation set of ActivityNet.

4. Conclusions

Fusing multiple CNNs on the feature map level can help
with capturing more relevant cues from different neural net-
works, while these networks are capturing information from
different aspects of visual data. Also, multi-stream CNNs
can be used as a good feature extractor for further vision
tasks in video analysis.
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Abstract

This paper presents the method that underlies our sub-
mission to the untrimmed video classification task of Ac-
tivityNet Challenge 2016. We follow the basic pipeline of
very deep two-stream CNN [15] and further raise the per-
formance via a number of other techniques. Specifically, we
use the latest deep model architecture, e.g. ResNet and In-
ception V3 and introduce a new aggregation scheme (top-k
and attention-weighted pooling). Additionally, we incorpo-
rate the audio as a complementary channel, extracting rel-
evant information via a CNN applied to the spectrograms.
With these techniques, we derive an ensemble of deep mod-
els, which, together, attains a very high classification accu-
racy (mAP 93.23%) on the testing set.

1. Introduction

In the past several years, the advance in deep learning
techniques has given rise to a new wave of efforts towards
vision-based action understanding. A number of deep learn-
ing based frameworks, including two-stream CNNs [7], 3D
CNNs (C3D) [11], and Trajectory-pooled Deep convolu-
tional Descriptors (TDD) [13], have been developed, which
significantly pushed forward the state-of-the-art [12, 14].
Such improvement on performance, to a large extent, is
owning to both the modeling capacity of deep architectures
and more effective learning strategies.

However, it is worth noting that previous efforts focus
mainly on the analysis of short video clips. These clips are
typically extracted from longer videos such that they only
contain the portions of frames that truly capture the actions
of interest. Obviously, preparation of such data is a labori-
ous procedure. Action recognition from untrimmed videos,
a problem that is more pertinent to real-world demands, is
drawing increasing attention from the community. While

substantially reducing the efforts needed in manual annota-
tion, this task on the other hand presents a new challenge
to the recognition system – a significant (or even dominant)
fraction of a given video is irrelevant to the action of inter-
est.

Driven by the ActivityNet benchmark [1], we develop an
integrated approach to recognizing actions from untrimmed
videos1. Our approach follows the framework of very deep
two stream CNNs presented in our earlier paper [15], which
allows both appearance and motion patterns to be effec-
tively fused and introduces various techniques to improve
the training procedure, e.g. temporal pre-training, and scale
jittering augmentation. On top of this framework, we de-
velop several new techniques to further improve the recog-
nition accuracy. While visual analysis plays a primary role
in this task, we notice that the audio channels that come
with these videos provide complementary information. To
exploit such information, we develop a deep network called
Audio CNN to derive complementary features from the
spectrograms.

Combining both the visual and acoustic models, we at-
tain a high recognition accuracy (mAP 93.23% on test-
ing set). We want to emphasize that this performance
is obtained only using the training data provided by the
ActivityNet benchmark except using CNNs pre-trained on
ILSVRC12 data for initialization – no additional data or an-
notations are used throughout both the training and testing
procedures.

The rest of this paper is organized as follows. Section 2
presents our approach in detail, Section 3 reports our results
under a variety of settings, finally Section 4 concludes this
work.

1Codes and models will be available at https://github.com/
yjxiong/anet2016-cuhk
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Table 1. Performance of different network architectures on ActivityNet v1.3 validation set. Performance is measured by per-class mean
average precision (mAP) and top-3 prediction accuracy. We use the variant “basic+a” in training these models.

Settings Spatial Nets Temporal Nets
BN-Inception Inception V3 ResNet BN-Inception Inception V3 ResNet

mAP 79.7% 83.3% 83.3% 63.3% 64.3% -
Top-3 Acc. 89.6% 91.5% 91.6% 77.0% 77.9% -

2. Our Approach

Our approach to untrimmed video classification com-
prises two complementary components: visual and acous-
tic modeling. The visual analysis, which combines a vari-
ety of techniques, plays a primary role in this framework,
while the acoustic model exploits complementary informa-
tion from the audio channels to further improve the perfor-
mance. Next, we present these components respectively in
Section 2.1 and 2.2.

2.1. Visual Analysis System

Our visual analysis component works as follows: it sam-
ples multiple snippets from a given video, makes snippet-
wise predictions using very deep two-stream CNNs, and fi-
nally aggregates the predictions via different strategies such
as top-k and attention-weighted pooling.

Snippet-wise Predictor Deep convolutional neural net-
works (CNN) which learns from multiple modality of in-
put data has been used extensively in visual recognition
tasks [8, 16, 17, 2] and achieved superiority over mod-
els using a single modality. The snippet-wise predictor in
our approach is a realization of the very deep two-stream
CNN framework [15] which consists appearance and mo-
tion modeling parts. In this work, we adopt the recently
proposed network architectures such as ResNet [3] and In-
ception V3 [9] to improve the capacity of the frame-wise
predictor.

During training of the snippet-wise predictor, the tech-
niques introduced in [15], such as scale jittering and
stronger dropout, is also applied to the these architectures.
To further boost the performance, we experimented with
the idea to sample several snippets from one input video
to jointly train the CNNs by averaging the per-snippet pre-
diction. This also enables us to apply more advanced aggre-
gation techniques into the training process.

Video-level Classification To obtain video-level classifi-
cation results, we use the following strategy: the snippet-
wise predictor is first applied to an input video snippet with
a 1FPS sampling rate, then an aggregation module will
combine the snippet-wise class scores into the final pre-
diction. We experimented with several advanced strategies
for combing snippet-wise scores of the appearance nets.

Table 2. Performance comparison of the appearance modeling
CNN variants on the validation set of ActivityNet v1.3. Here we
analyze their performance using the Inception V3 [9] architecture.
In the table, “basic” refers to the baseline approach in [15], “a”
refers to models trained with multiple snippets from one video,
“b” refers to models equipped with advanced aggregation strate-
gies.

Variants mAp Top-3 Acc.
basic 82.9% 91.0%
basic+a 83.3% 91.5%
basic+ab 84.2% 92.1%
Ensemble 85.9% 92.9%

Table 3. Performance of different components in the visual analy-
sis system on the validation set. Here, “Appearance CNN” refers
to the appearance modeling part. “Motion CNN” refers to the mo-
tion modeling part. “Combined CNN” refers to the results by com-
bining both appearance and motion modeling parts. “Visual All”
refers to the results by further combining scores from other meth-
ods such as IDT [12] and TDD [13].

Variants mAp Top-3 Acc.
Appearance CNN 85.9% 92.9%
Motion CNN 68.3% 80.2%
Combined CNN 89.7% 95.0%
Visual All 90.4% 95.2%

These include top-k pooling and attention weighted pool-
ing. These strategies, when used in both training and test-
ing, produced models that are complementary to each other
and thus form effective components in the final ensemble.

2.2. Acoustic Analysis System

Audio signals in a video carry important cues for recog-
nizing some action classes. To harness the information in
this aspect, we combine the standard MFCC [5] represen-
tations with audio-based CNNs [10] to form the acoustic
modeling system.

MFCC Mel Frequency Cepstral Coefficients (MFCC) [5]
is a powerful feature descriptor used in automatic speech
recognition system. In our approach, we extract MFCC fea-
tures from companioned audios of the videos in the dataset,
and train SVMs on descriptors aggregated with Fisher Vec-
tor [6]



Table 4. Performance of acoustic models on ActivityNet v1.3 val-
idation set. Performance is measured by per-class mean average
precision (mAP) and top-3 prediction accuracy. Here, “Gray”
refers to the models trained with grayscale inputs. “MS” refers
to the model trained with multiple time scales.

Methods mAP Top-3 Acc.
MFCC (FV+SVM) 14.2% 26.1%
Audio CNN 8.0% 17.1%
Audio CNN Gray 9.3% 19.3%
Audio CNN Gray+MS 10.3% 20.7%
Audio Ensemble 15.2% 29.1%

Table 5. Performance of fusion models on ActivityNet v1.3. Per-
formance is measured by per-class mean average precision (mAP)
and top-3 prediction accuracy. In “Visual + Audio” setting, we
combine the visual and acoustic modeling system. On the testing
set, we present the results of “Final Ensemble” where all compo-
nents trained on training plus validation data are combined.

Validation Set mAp Top-3 Acc.
Visual 90.4% 95.2%
Audio 15.2% 29.1%
Visual + Audio 90.9% 95.6%

Testing Set mAP Top-3 Acc.
Visual CNN (Single) 91.2% 95.6%
Final Ensemble 93.2% 96.4%

Audio CNN The basic idea of Audio CNN works is to
apply CNNs on spectrograms, or time-frequency-response
maps, of audio signals. In this work, we propose to directly
use the grayscale time-frequency map image to train the
audio CNN. Then the audio CNN can be initialized by the
same technique used on the temporal networks in [15]. It
is also known that learning from multiple time scales help
in acoustic models [18]. In this sense, we propose to stack
multiple spectrograms with varying window size as the in-
put to the audio CNN.

3. Experiments
We train our models on the official training set of Ac-

tivityNet v1.3 dataset [1]. There are 10, 024 videos for
training, enclosing 15410 activity instances from 200 ac-
tivity classes. The validation set contains 4926 videos and
7654 activity instances. We study the performance of our
approach on this validation set. The final testing set com-
prises 5044 videos and is not annotated with any activity
instance. We report the performance of our proposed mod-
els on this set according to the feedback of the test server of
the challenge. Models for this setting are trained with the
union of training and validation set.

In experiments, we compare the performance of very
deep two stream CNN [15] using several network archi-
tectures, including BN-Inception [4], Inception V3 [9], and

ResNet [3]. The performance of different network struc-
tures for spatial and temporal stream are summarized in
Table 1. To analyze the effect of different training strate-
gies, we compare the performance of appearance modeling
CNNs with these strategies. The results are presented in Ta-
ble 2. The contributions of appearance and motion CNNs
are also summarized in Table 3. Then we report the per-
formance of the two components in the acoustic analysis
systems in Table 4.

Finally, we evaluate the fusion of visual analysis system
and audio analysis system on both the validation and test-
ing set. The results are illustrated in Table 5. The best mAP
achieved by the final ensemble is 93.2%. We also took one
chance on the testing server to evaluate a combination of
one appearance CNN and one motion CNN. Its results are
presented as “Visual CNN (Single)” in Table 5. It is ex-
citing to see using this “single model” setting we can still
achieve a reasonable mAP of 91.2%, which may better fit
for industrial applications.

4. Conclusions
This paper has proposed an action recognition method

for classifying temporally untrimmed videos. It is based
on the idea of combining visual analysis and acoustic anal-
ysis. The results show that by carefully designing the vi-
sual and acoustic analysis systems and combining them, we
can achieve exciting results in video classification tasks and
boost the performance of state-of-the-art methods. Another
fact to be noticed is that this high accuracy is achieved by
evaluating only 1 frame per second, equivalent to only see-
ing around 4% of all frames of input videos. We believe this
property is also very important for practically applying the
system in industrial scenarios.
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Method 
Our method is based on Twostream [1] video classification algorighm. We finetuned 
ResNet101, ResNet152 [2] pretrained with ImageNet [3] using ActivityNet dataset for 
classifying each action frames into 200 classes. However, CNNs trained with optical flow 
image gave much worse accuracy than RGB image for this dataset. Besides original 
ResNet101 separately trained with RGB images and optical flow images, we trained 
endtoend fusion network (ResNet101fusion). In the network, outputs of conv5 layer of 
RGB network and optical flow network are stacked and followed by 1x1 convolution layer to 
reduce the number of channels to match the original shape. Other part of the network is 
same as original ResNet101. 
Frames not annotated with action (nonaction frames) are not used for training. 
For classification task, activations from last convolutional layer for a CNN are coded with 
VLAD [4] method and sumpooled along whole video. Onevstherest linear SVM is used for 
classify the video. Prediction scores from SVMs trained with different CNNs are summed 
with weight to gain final prediction score. CNNs we used are ResNet152 finetuned with 
RGB image, ResNet152 not finetuned, ResNet101 finetuned with RGB image, 
ResNet101fusion finetuned with RGB and optical flow image. Additionally, we added 
prediction scores trained with three features provided by the organizers. Finally, for 
improving mean average precision, softmax function is applied to the scores from each 
video. 
For detection task, sliding window based approach is applied. When training, action window 
classifier is trained for each action. Windows whose intersection over union (IoU) is higher 
than 0.5 are used as positive samples and other windows are negative. When detecting, first 
classifiers for classification task are applied to whole video and top 1 action is used as 
candidate. Window classifier for the candidate class is applied to the video and the windows 
with certain threshold are output as detection result. 
For detection task, sliding window for averaging classification score for each frame is 
applied, and the windows higher than a threshold are output. 
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Abstract 
 

We describe our approach to the task activity 
classification in the activitynet challenge hosted at CVPR 
2016. We use different spatio-temporal cues from frames 
and sequence of frames using 2-D and 3-D convolutional 
neural networks(CNN). The action prediction is done by 
combining the predictions of one-versus-rest linear SVMs 
learnt for each cue. 
 

1.!Introduction 
Action recognition in videos is of key importance for 

many applications, including but not limited to video 
surveillance, video summarization, video retrieval etc. It is 
a challenging problem because of various difficulties like 
background clutter, view-point change and various action 
styles. The activity-net challenge 2016 represents one of the 
most comprehensible data for this task. It consists of more 
than 5000 untrimmed long test videos with actions ranging 
over 200 classes.  

The performance of any action recognition system 
depends on the representation of the video. In this paper, we 
present our approach for this challenging task. We use 
frame based features and small clip based features extracted 
by CNNs. 

 

2.!Our approach 
Our approach consists of feature extractions from 

uniformly separated frames of the video, non-overlappling 
16-frame long clips and then linearly combined to form the 
video representations. Then we train 200 one-versus-rest 
SVMs to perform the classification task. 

3.!Feature extraction 
We extract features from frames as well as short 

continuous clips of 16 frames from the video.  

3.1. Frame features 
 Some actions are strongly attached to particular scenes 
which makes individual frames an important source of 
features. We make use of VGG_19[1] for individual frame 
feature extractions. VGG_19 is one of the most superior 
deep convolutional network and consists of 19 layers, 16 
convolutional and 3 fully connected layers. It is trained on 
a large dataset, imagenet with millions of images and can 
extract visual concepts from a wide range of scenes and 
objects. We finetune the original VGG_19 network on 
activity-net dataset and extract outputs of fully connected 
layers fc7 and fc8. Then we apply mean pooling on features 
from sampled frames to create a frame based video 
representation.  

3.1. Short clip features 
 Other than individual frames, we also use 3D 
Convolutional Neural Networks (3D CNN) to construct 
video representation from both spatial as well as temporal 
domains. We use the network architecture of C3D [5], 
which has alternating layers of 3D convolutional and 3D 
pooling layers with input data of continuous frames 
comprising a short clip of the video. We extract the fc7 and 
fc8 layer features from this network. 
 We finetune the C3D network for our dataset by 
removing the last softmax layer with the layer comprising 
of 200 outputs. The input to C3D network is 16-frame clip, 
we generate non-overlapping 16-frame clips of the video 
and input them into the C3D network and afterwards, apply 
the mean pooling to obtain the video representation. 

4.!Classification 
We use the linear SVM with the linear kernel to combine 

all the features described above and do the classification. 
We set the the SVM parameter, C equal to 10 for all the 
features and then train 200 one-versus-rest classifiers with 
all the features L2-normalized. 
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Table 1: Single source results on validation set 

Source Layer mAP 

Frames fc7 
fc8 

0.45 
0.42 

Short clips fc7 
fc8 

0.6 
0.62 

 

5.!Experiment 
We perform the experiment on the validation set with 
different set of features from each domain, frames and short 
clips. We combine and take individually, the fc7 and fc8 
features from each source and compute mAP score over the 
validation set. It is tabulated in the table 1 above. We also 
combine the layers from each source individually and 
overall which is tabulated in table 2. We used caffe to 
develop and experiment our system on a single K40 GPU 

6.!Conclusion 
In this challenge, we mainly focused on different short-term 
and long-term spatio-temporal features which are good for 
describing actions. Optical flow features and improved 
dense trajectories based video representations can be used 
as well for future directions. 
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Table 2 
Source mAP 

Frames fc7+fc8 0.44 

Clips fc7+fc8 0.6 

All four combined 0.55 
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1 Features

The following are the features been used:

1. Residual Net CNN feature. Each one is a 2048-dimension semantic feature.
Skip 2 in every 3 frames and then perform average pooling to form the
representation.

2. C3D feature. I use the provided 500-dimension and perform average pool-
ing.

3. MFCC feature. Window size is 20 ms with hanning window and shift by
10ms. Build bag-of-word with 3000 k-means and generate the histogram
accordingly.

2 Classifier

I perform grid search for SVM parameter tuning and pick the best model. The
cost is between 10−1 . . . 103. The gamma value is between 10−2 . . . 102. The
kernel is with linear, Chi-Square and RBF.
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Abstract

In this notebook paper we present an overview of our
solution to the ActivityNet Large Scale Activity Recogni-
tion Challenge 2016. We report system designs for both
the untrimmed video classification task and the activity de-
tection task. Specifically, we investigate and exploit mul-
tiple video representations: vectors of locally aggregated
descriptors, improved dense trajectories, optical flow, 3D
ConvNet, and acoustic features. Two promising deep mod-
els are utilized, namely ResNet-152 and Inception-V3. An
advanced feature integration algorithm termed multi-view
intact space learning is used to produce the final video rep-
resentation. Furthermore, we exploit an efficient two-stage
strategy for the detection task. Our system obtains state-of-
the-art performance for large-scale activity classification
and detection.

1. Introduction
Activity classification [4, 9, 27] and detection [15, 26,

17, 27] in long, real-world video sequences are challenging
but critical components of various vision applications in-
cluding video surveillance, video summarization, and video
retrieval. Algorithms must not only identify the activity in
a video but also deduce when the activity occurs. There
has been considerable progress in this area over the last few
years, with data-driven feature extraction [24] largely out-
performing conventional handcrafted features [21] for video
classification or detection activities.

However, many datasets used for activity classification
and detection contain trimmed video clips of only a few sec-
onds - a much easier task than the untrimmed case. The Ac-
tivityNet [1] challenge provides an opportunity for the re-
search community to design algorithms for the untrimmed
video scenario. The dataset used in this challenge con-
tains 200 classes, with each class including 100 untrimmed
videos, each specifying on average 1.54 activity instances.
These data present a major challenge for modern algo-

rithms.
In this notebook paper, we investigate possible solu-

tions for classification and detection tasks on these video
data. Specifically, we study how performance is affected
by ensembles of multiple video representations including
vectors of locally aggregated descriptors (VLAD) [6], im-
proved dense trajectories (IDT) [21], optical flow [16], 3D
ConvNet [20], and acoustic features [11]. Considering that
each representation has partial video information but mul-
tiple representations contain redundant video information,
we investigate an advanced feature integration algorithm
termed multi-view intact space learning [23], which pro-
duces a useful representation for each video. We also design
an efficient two-stage detection strategy. Our system shows
promising performance for both untrimmed video classifi-
cation and activity detection.

2. Video Representations

To maximally extract useful information from videos for
classification and detection, we employ five video represen-
tations as detailed below.

2.1. Vectors of locally aggregated descriptors

Each video frame provides static yet informative cues
that are strongly associated with the video content. Im-
age classification studies have shown that these cues are
well captured by hierarchical extraction through deep con-
volutional neural networks (CNNs) [8]. To generate the
video representation, average pooling on the frame-level
CNN features provides fewer discriminative descriptors
than pooling with VLAD [6]. Therefore, we use VLAD
to generate the first of our video representations.

Specifically, we employ three CNN models to collect
frame-level features: ResNet-152 [5] pre-trained on Im-
ageNet [3], ResNet-152 [5] pre-trained on Places2 [28],
and Inception-V3 [19] pre-trained on ImageNet [3]. Pre-
training equips these models with high representation ca-
pacity. In ResNet-152, the res5c relu layer of size 7 ∗ 7 ∗
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2048 is used to extract features, while in Inception-V3, the
output of the last inceptions sized 8 ∗ 8 ∗ 2048 is used as the
deep feature of a frame. For each model, the dimension of
the extracted features is reduced to 1024 by principle com-
ponent analysis (PCA). The VLAD encoding procedure is
then applied to the dimension-reduced features. In this way,
three VLADs are generated for a video. The number of the
centers used in VLAD is set to 512.

2.2. Improved dense trajectories

Handcrafted features can provide semantic characteris-
tics that are not revealed by the learned features. Therefore,
these features can be used as complementary information to
enhance the video representations. Specifically, we choose
IDT [22], a state-of-the-art handcrafted feature. In IDT,
histogram of oriented gradients (HOG), histogram of flow
(HOF), and motion boundary histograms (MBH) are com-
puted for each video as features. As in [22], Fisher Vector
encoding [14] is further utilized to quantize the features and
create a high-dimensional representation. This provides the
second part of our video representations.

Of note, IDT suffers from the inconsistencies arising
from human and camera motion, which may significantly
affect homography estimation. This problem is often over-
come by masking the human regions in videos using a hu-
man detector. Here we employ a state-of-the-art detector,
Faster R-CNN [13], on top of the ResNet-152 model [5]
pre-trained on the COCO dataset [10].

2.3. Optical flow

The relevance of consecutive frames is also informa-
tive for identifying video contents. Optical flow is widely
used to reveal this information. To extract motion features
from optical flow images, we again employ a deep CNN
model to generate the fourth part of our video represen-
tations. Specifically, we choose the two-stream architec-
ture [16] consisting of the spatial stream ConvNet and tem-
poral stream ConvNet, which are designed for video clas-
sification. After principled learning of the whole model
on UCF-101 [18], the well-trained temporal stream is used
to extract representations from the optical flow. Referring
to [16], we set the optical flow stacking depth to L=10 for
optimal performance.

2.4. 3D ConvNet features

We use the 3D ConvNet architecture [20] to construct
video features from the spatial and temporal dimensions in
a unified manner. 3D ConvNet takes the whole video as
input and outputs a powerful feature through a set of 3D
convolutional and 3D pooling layers. In particular, we em-
ploy the superior architecture in [20], namely C3D, which
simultaneously models the general appearances and motion
information of activities. The output of the fully connected

fc7 layers is used as the feature. The C3D model is already
pre-trained on the Sports-1M dataset [7] so no fine-tuning is
applied. Since C3D is designed to accept a 16-frame video
clip, each video is segmented into clips of the correct size
with an 8-frame overlap. The clips are sequentially fed into
C3D to compute the features, whose dimensions are then
reduced from 4096 to 500. The stacked features are used as
the fourth part of our video representations.

2.5. Acoustic features

Acoustic features act as a weak enhancer for our video
representations since they cannot provide enough discrim-
inative information for activity classification and detection
alone. However, when used in collaboration with the above
representations, acoustic features are useful, particularly
when a class of activities has specific audio information,
such as sound of blowing hair or leaves. In addition, seman-
tic information translated from the monologue or dialogue
of the video can provide more accurate clues for action anal-
ysis. However, we have not utilized this information for the
action classification task. Here we extract MFCC [11] from
the audio signals and then quantize them based on BoWs
with 4000 words. The resultant BoW vector is our final
video representation.

3. Latent Intact Representation
The above representations describe different video in-

stance views. Each view may only capture partial informa-
tion, but together they capture redundant information about
the instance. Hence, it is both valuable and necessary to
integrate this multi-view information. For this purpose, we
use the multi-view intact space learning (MISL) algorithm
to extract the latent intact representation from the multi-
view information [23]. Assume that each of the above rep-
resentations is represented by zvi ∈ RDv , where i is the
sample index and v is the representation index. MISL as-
sumes that the representations {zvi } depend on a latent in-
tact representation via a view generation function. A linear
example is that

zvi =Wvxi + εvi , (1)

where xi ∈ Rd is a sample point in the latent intact space,
X , Wv ∈ R(Dv×d) is the v-th view generation matrix, and
εvi is the view-dependent noise. MISL measures the recon-
struction error over the latent intact space using the Cauchy
loss:

1

mn

m∑
v=1

n∑
i=1

log(1 +
‖zvi − wvxi‖2

c2
)

+C1

m∑
v=1

‖Wv‖2F + C2

n∑
i=1

‖xi‖22,
(2)

where c is a constant scale parameter, C1 and C2 are non-
negative constants, and m = 5. The last two terms reg-
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Figure 1. Framework of the proposed system for action classifica-
tion.

ularize the respective quantities to avoid overfitting. Con-
sidering that there are a large number of training samples
in this challenge, we use linear MISL. Following the learn-
ing process in [23], we optimize the parameters {Wv} and
the latent intact representations {xi} using the iteratively
reweighted residuals algorithm. Once {Wv} are trained
properly, the inference process is as follows. Given a new
data sample with the representations {z1, . . . , zm}, the cor-
responding latent intact representation is obtained by solv-
ing

min
x

1

m

m∑
v=1

log(1 +
‖zv − w∗

vx‖
2

c2
) + C2 ‖x‖22 . (3)

4. Untrimmed Video Classification
Figure 1 illustrates the framework of our proposed sys-

tem for untrimmed video classification. No video pre-
processing is performed, but instead we directly extract the
above-mentioned five representations for each video. The
representations are fused by finding the latent intact repre-
sentation [23]. For multi-class classification, linear support
vector machines (SVMs) [2] are used with the one-vs.-rest
setting, meaning that each classifier separates the samples
of one class against the samples of all other classes. There-
fore, 200 classifiers are trained in total. The SVM parameter
is set to C=10.

5. Activity Detection
Activity detection aims to identify the temporal location

of an activity. As can be seen from Figure 2, different ac-
tions have different durations, which sometimes makes the
annotation indefinite. For example, do we need to segment
the action when view changes for a very short time or per-
son changes by montage? Actually, it is easier to locate
the action of Riding Bumper Cars than that of Playing Ten

(a) Riding Bumper Cars

(b) Playing Ten Pins

Figure 2. Action annotations of two particular classes on the vali-
dation set. Each red segment indicates the action duration, which
is normalized by the whole video. Detection of the first action
(Riding Bumper Cars) is much easier than the second action (Play-
ing Ten Pins).

Pins. It is well known that the vast majority of short videos
from Youtube record a particular action from beginning to
end [25], which means the action tends to take place in the
middle of the video, as indicated in Figure 3. In order to im-
prove the mAP of action detection under the criterion of 0.5
IoU, we employ an effective pipeline for action detection on
Youtube videos.

We follow the detection pipeline shown in Figure 4. At
first, we try to localize actions with high precision. Videos
with single and long actions are the primary focus at this
stage. Then, to improve the recall, we segment the videos
with multiple short actions to generate more predictions. To
perform classification in the detection pipeline, we must re-
train the SVM classifiers on activity intervals rather than
whole videos. For this, we crop activity instances from a
video according to the ground truth intervals. The begin-
ning and end of an instance are randomly located such that
the instance interval and the ground truth interval have at
least 0.7 IoU overlap. We use VLAD, IDT, and C3D as
features in this task.
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Figure 3. Action distribution on the validation set. Most of the
actions take place in the middle of videos.

Figure 4. Detection pipeline.

5.1. Break off both ends

The irrelevant contents at the beginning and end of an
activity video may decrease activity detection performance.
Therefore, we first remove both ends of the video. Specif-
ically, given a video, we uniformly divide it into 10 inter-
vals. The representation is generated for each interval and
then fed into the SVM classifiers of the ground truth video
class. If the fusion of the SVM outputs is less than 0, the
corresponding interval is regarded as irrelevant; otherwise,
it is relevant. This is performed from the beginning until a
relevant interval is found, with a similar operation applied
to the end. In this way, the irrelevant beginning and end
can be removed. At this stage, we pretend that there is only
one action in the video and remove the irrelevant contents
at the beginning and end of a video. However, we also clas-
sify each video into two classes: single action video and
multi-action video with the scores on the 10 intervals. At
the following stage, we focus on the multi-action videos to
improve the recall.

5.2. Temporal segmentation

A cropped video is obtained after the first step. We next
apply a sliding window (30 frame stride) over the cropped
video covering 100 frames. When the window is located at
a position, the covered frames are fed into the feature ex-
traction process and then the SVM classifiers of the ground

truth video class, thereby producing a decision score. As
the window slides, a set of scores is generated to form a 1D
video representation that can be used to reveal when the ac-
tivities occur. We then apply the kernel temporal segmenta-
tion method [12] on the 1D representation to generate a set
of temporal segments.

5.3. Segment combination

To obtain the final activity interval, we must judge
whether adjacent segments should be merged into one in-
terval. For this purpose, adjacent segments are concatenated
into intervals during training. For example, 10 consecutive
segments can be concatenated into 10 ∗ 11/2 = 55 inter-
vals. If a generated interval and a ground truth interval have
at least 0.7 IoU overlap, this interval is regarded as a pos-
itive sample; otherwise, it is a negative sample. We then
train an SVM classifier on these samples.

We define the beginning segment of an activity as an an-
chor segment. During testing, given a set of temporal seg-
ments, the following operations are started from each of the
anchor segments. To decide whether the i-th and (i+ 1)-th
segments are merged, we generate the representation from
the temporarily merged interval and use the SVM classi-
fier to test. If a positive result is obtained, the merging is
successful and we further test the merging with the (i+2)-
th segment. If a negative result is obtained, the merging
is unsuccessful, and we then proceed to test the following
segments sequentially until a new anchor segment is found.
The resulting intervals reveal the beginning and end of each
activity in the video. We directly discard predictions less
than 5% of the whole video in the detection task.

6. Experiments
When we test on the validation set, the SVM classifiers

and MISL are trained on the training set. When the test set
scores are predicted, both the training and validation sets
are used to train MISL and SVM.

6.1. Classification results

We first investigate the performance of different combi-
nations of the video representations on the validation set,
as shown in Table 1. We also give the hardest and easiest
class names based on the Top-1 error in Table 2. As shown
in Figure 5, there are a small number of classes that tend
to be confused with other classes, such as Long Jump and
Triple Jump, Polishing Shoes and Cleaning Shoes, Mowing
the Lawn and Cutting the Grass.

As shown in Table 3, we evaluate the proposed method
five times on the test set. The first submission is based on
VLADs+IDT. Then, the second and third submissions are
based on VLADs+IDT+OF and VLADs+IDT+OF+C3D,
respectively. Finally, the fourth and fifth submissions are
based on VLADs+IDT+OF+C3D+MFCC.
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Representations mAP Top-1
VLADs 0.879 0.832

VLADs+IDT 0.897 0.855
VLADs+IDT+OF 0.909 0.863

VLADs+IDT+OF+C3D 0.923 0.874
VLADs+IDT+OF+C3D+MFCC 0.932 0.881
Table 1. Action classification results on validation set

Hardest Class Easiest class
Removing curlers Tango

Long jump Riding bumper cars
Triple jump Preparing pasta

Rock-paper-scissors Playing rubik cube
Volleyball Playing ice hockey

Drinking beer Scuba diving
Gargling mouthwash Using the pommel horse

Washing face Ping-pong
Kayaking Using the rowing machine

Peeling potatoes Rock climbing
Having an ice cream BMX
Smoking a cigarette Plastering

Shot put Ice fishing
Painting furniture Sailing
Installing carpet Hitting a pinata
Drinking coffee Welding

Applying sunscreen Playing blackjack
Cutting the grass Playing pool
Mowing the lawn Windsurfing
Cleaning shoes Arm wrestling

Putting on shoes Elliptical trainer
Doing nails Using the monkey bar

Hand washing clothes Snow tubing
Table 2. The hardest and easiest classes based on the Top-1 classi-
fication error.

Figure 5. Confusion Matrix on validation set. Classes are sorted in
alphabetical order.

Representations mAP Top-1 Top-3
submission1 0.89354 0.85726 0.95844
submission2 0.90992 0.86418 0.96524
submission3 0.91823 0.87291 0.96722
submission4 0.92286 0.87633 0.97044
submission5 0.92413 0.87792 0.97084

Table 3. Action classification results on test set

> 50% > 40% > 30% > 20% > 10%
78.20% 83.20% 87.70% 92.20% 96.39%

Table 4. Action duration statistics from single action videos (75%)
on the validation set.

single trim multi segment
mAP 39.76% 43.65%
recall 52.50% 62.24%

Table 5. Detection results of the proposed method on the validation
set. The recall is evaluated by the criterion of 0.5 IoU.

6.2. Detection results

As shown in Table 4, 75% videos have only one action,
and we give the statistics of the single-action videos on the
validation set. 78.2% actions last for more than 50% of
the video length in the single-action videos. We investigate
the effectiveness of the proposed method on the validation
set. We set the evaluation criterion as at least 0.5 IoU. As
can be seen from Table 5, we obtain the mAP of 39.76%
by predicting the beginning and the end of an action with-
out temporal segmentation. The recall in this case is only
52.50%, but high precision can be preserved. To further im-
prove the recall, we generate the action intervals by tempo-
ral segmentation and combination, and in this way, the mAP
is improved to 43.65%. Finally, we evaluate the proposed
method on the test set, obtaining the mAP of 42.478%.
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Abstract

This notebook paper presents overview and comparative
analysis of our system designed for untrimmed video classi-
fication task in ActivityNet Challenge 2016. We investigate
and exploit multiple spatio-temporal clues, i.e., frames, mo-
tion (optical flow), and short video clips, using 2D or 3D
convolutional neural networks (CNNs). The mechanism of
different quantization methods are studied as well. Further-
more, improved dense trajectory with fisher vector encoding
on long video clips and MFCC audio features are utilized.
All activities are classified by late fusing the predictions of
one-versus-rest linear SVMs learnt on each clue. Finally,
OCR is employed to refine the prediction scores.

1. Introduction
Recognizing activities in videos is a challenging task as

video is an information-intensive media with complex vari-
ations. In particular, an activity may be represented by d-
ifferent clues including frames, motion (optical flow), short
video clips, long video clips, audio and OCR. In this work,
we aim at investigating these multiple clues to activity clas-
sification in videos.

The remaining sections are organized as follows. Sec-
tion 2 describes our activity recognition system. Section
3 presents all the features, while Section 4 details feature
quantization strategies. In Section 5, we provide empirical
evaluations, followed by the conclusions in Section 6.

2. Recognition Framework
Our activity recognition framework is shown in Fig-

ure 1. In general, the untrimmed video classification pro-
cess is composed of three stages, i.e., multi-stream feature
extraction, feature quantization and prediction generation.
For deep feature extraction, we follow the multi-stream ap-
proaches in [4, 6], which represent the input video by a
hierarchical structure including individual frames, consec-
utive frames and short clips. In addition to deep features,

∗Principal Designer.

two most complementary hand-crafted features, i.e., iDT
and audio MFCC, are exploited to further enrich the video
representations. After extraction of raw features, different
quantization and pooling methods are utilized on different
features to produce representations of each video. A linear
SVM is trained on each kind of video representations and
the predictions from multiple SVMs are combined by lin-
early fusion. When training SVM, we fix C = 100 for all
the experiments. Finally, OCR is employed to refine the list
of recognized videos for each activity.

3. Multi-Stream Features
In our framework, we extract the features from multiple

clues including frames, motion, short clips, long clips, au-
dio and OCR.

3.1. Frame

To extract frame-level representations from video, we
first uniformly sample 50 frames from each video, and then
use pre-trained/finetuned 2D CNNs as frame-level feature
extractors. We choose three popular 2D CNNs in image
classification: VGG [7], GoogLeNet [5, 9] and ResNet [1].
The performances between features extracted from different
layers of different architectures will be discussed later.

3.2. Motion

To model the change of consecutive frames, we apply an-
other CNNs to optical flow “image,” which can extract mo-
tion features between consecutive frames. When extracting
motion features, we follow the setting of [12], which fed
20 optical flow images, consisting of two-direction optical
flow from 10 consecutive frames, into VGG 16 network in
each iteration. We use VGG 16 model and sample rate is
50 per video, which means 50×20 optical flow “images”
are considered for each video.

3.3. Short Clip

In addition to frames and motion between consecutive
frames, we further exploit popular 3D CNN architecture,
C3D [10], to construct video clip features from both spatial
and temporal dimensions. The C3D model is pre-trained on
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Figure 1. Framework of our proposed system.

Sports-1M dataset [3]. We fix the length of short clip to 16
frames, and sample rate is also 50 per video.

3.4. Long Clip

For long clips, we choose the state-of-the-art handcraft-
ed features - improved dense trajectory (iDT) [11] on each
sampled clip. Specifically, trajectory feature, histogram of
oriented gradients (HOG), histogram of flow (HOF), and
motion boundary histogram (MBH) are computed for each
trajectory obtained by tracking points in video clips. Fur-
thermore, fisher vector encoding is used to quantize the fea-
tures and create high dimensional representations for each
clip. Considering that the extraction of iDT is very time
consuming, we split each video into a set of five-second
clips evenly without any overlap.

3.5. Audio

For audio features, MFCC are extracted and exploited.
As the duration of different videos are different, the counts
of MFCC are also different.

3.6. OCR

Tesseract OCR [8] is used to extract text from video
frames. We apply the detector on each frame from the w-
hole video, followed by string matching with activity name.
Before matching, we simplify the activity name by remov-
ing meaningless word, e.g. “doing the,” and remove some
misleading categories, e.g. “polo.” Finally, we simply take
the videos as positive samples if the activity name appears
in the text of their frames.

4. Feature Quantization
In this section, we describe three quantization methods

to generate video-level representations from frame-level or
clip-level features.

4.1. Average Pooling

As shown in the Figure 1, we use average pooling upon
the extracted features from consecutive frames, short clips
and long clips. For a set of frame-level or clip-level features
F = {f1, f2, ..., fN}, the video-level representations are
produced by simply averaging all the features in the set:

Rpooling =
1
N

∑
i:fi∈F

fi , (1)

where Rpooling denotes the final representations.

4.2. VLAD

Recently, Vectors of Locally Aggregated Descriptors
(VLAD) [2] shows good ability on feature quantization.
With K-means centers C = {c1, c2, ..., cK}, video-level
representations from VLAD can be described as:

uk =
∑

i:NN(fi)=ck

(fi − ck)

Rvlad = normalize(u)
, (2)

where NN(fi) denotes fi’s nearest neighbor in C. We
choose the variant of VLAD called VLAD-k, which re-
places the nearest neighbor with k-nearest neighbors, and
fix k = 5. For feature normalization, we choose power, l2
and intra-normalization by default.
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Table 1. Top1-accuracy of different 2D CNN architectures on Ac-
tivityNet validation set. The video feature are extracted on 50 sam-
pled frames followed by average pooling.

Network Fintuned Layer Top1
VGG 19 fc6 66.59%
GoogLeNet pool5 68.76%
ResNet 152 pool5 71.43%
VGG 16

√
fc6 67.03%

GoogLeNet
√

pool5 68.57%
ResNet 50

√
pool5 68.43%

ResNet 152
√

pool5 74.82%

4.3. Deep Quantization

VLAD has two obvious weaknesses: (1) high compu-
tation and storage cost; (2) label information is ignored.
Therefore, we present a novel network-based quantization
method called Deep Quantization (DQ).

First, we train a generative neural network with param-
eters θ on the top of feature extraction network. Following
the fisher kernel method, the video-level representations are
defined as

LGenerative(θ) =
∑

f∈TrainingSet
−log p(f, θ)

θ̂ = arg max
θ

LGenerative(θ)

RDQ = normalize(
∑

i:fi∈F

∂(−log p(fi,θ̂))
∂θ̂

)

, (3)

where p(f, θ) is the generative network output. After op-
timizing parameters θ, the gradient calculation and accu-
mulation can be processed in an end-to-end manner during
backpropagation, and no extra storage is required. To fur-
ther improve the ability of representations, we propose a
semi-supervised optimizing function as:

L(θ) = LGenerative(θ) + λLClassification(θ)

θ̂ = arg max
θ

L(θ)

RDQ = normalize(
∑

i:fi∈F

∂(−log p(fi,θ̂))
∂θ̂

)

. (4)

The detailed description of our deep quantization network
and more experimental analysis will be published on arX-
iv.org soon.

5. Experiment
5.1. 2D CNNs Comparison

Here we compare three popular 2D CNN architectures:
VGG, GoogLeNet and ResNet. The comparison results on
validation set are shown in Table 1.

The settings of 2D CNN are generally divided into t-
wo parts, i.e., “pre-trained model + average pooling” and

Table 2. Top1-accuracy of different quantization methods on Ac-
tivityNet validation set. All the local feature are extracted from
ResNet 152 architecture.

Method Fintuned Layer Top1
Average Pooling

√
pool5 74.82%

Average Pooling pool5 71.43%
VLAD rec5c 76.70%
Deep Quantization rec5c 78.55%

“finetuned model + average pooling.” All the four fine-
tuned networks are initialized by pre-trained models, and
finetuned on ActivityNet training set. We can observe that
ResNet 152 achieves the highest accuracy among the three
architectures and it will be further improved by finetuning.

5.2. Quantization Comparison

Table 2 shows the results of different quantization meth-
ods on ResNet 152. We exploit VLAD and our Deep Quan-
tization on the outputs of Res5c layer which is the last con-
volutional layer. It is worth noting that we only apply these
two quantization methods on default ResNet 152 model.
For VLAD, we first reduce the feature dimension to 1024
by PCA, and then apply k-means with k = 256, which
means the dimension of representations for each video is
1024 × 256. For Deep Quantization, we set the number
of hidden state to 128, making the feature dimension of
2048× 128 in total.

It can be observed that VLAD obtains large performance
improvement over Average Pooling method (76.70% vs
71.43%), which is even higher than finetuned model. Our
proposed Deep Quantization model achieves better accura-
cy than VLAD (78.55% vs 76.70%), and it is the best setting
of our 2D CNN.

5.3. Performance Comparison

Table 3 shows the performances of all the components in
our submission and their fusion weights. The fusion weight-
s are tuned using gradient descend on validation set by min-
imizing the classification loss. The OCR results are consid-
ered as post-processing and employed after linear fusion.

Overall, our Deep Quantization on ResNet 152 achieves
the highest accuracy (78.55%) of single component, and it
also obtains the highest fusion weight (24.9%). Although
MFCC only gets 17.92% top1-accuracy, its fusion weight
(19.1%) is the second highest due to the high complemen-
tarity between aural and visual features.

For the final submission, we train the SVMs using train-
ing and validation sets. All the components are fused using
the weights tuned on validation set. Our final performance
on test set is also shown on Table 3. Our top1-accuracy on
test set is about 2% higher than validation set. This result
basically indicates that more data used in training process
may lead to higher recognition accuracy.
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Table 3. Comparisons of different components in our framework on ActivityNet validation set. We also include the performance on
ActivityNet test set from leader-board. Please note that there are two different settings of iDT, while the “Sample-10” means we randomly
sample 10 long clips and average the predicting probabilities.

Stream Feature Fintuned Layer Quantization Top1 Top3 MAP Fusion Weights

Frame

VGG 19 fc6 Ave 66.59% 82.70% 70.22% 0.7%
GoogLeNet pool5 Ave 68.76% 84.73% 73.37% 1.2%
ResNet 152 pool5 Ave 71.43% 86.45% 76.56% 0.6%

VGG 16
√

fc6 Ave 67.03% 83.68% 70.12% 0.4%
GoogLeNet

√
pool5 Ave 68.57% 85.26% 72.19% 1.4%

ResNet 50
√

pool5 Ave 68.72% 86.13% 72.96% 8.4%
ResNet 152

√
pool5 Ave 74.82% 87.59% 79.43% 6.3%

ResNet 152 res5c VLAD 76.70% 89.07% 81.52% 3.8%
ResNet 152 res5c DQ 78.55% 91.16% 84.09% 24.9%

Motion VGG 16
√

fc6 Ave 49.05% 65.96% 49.06% 8.3%
Short Clip C3D fc6 Ave 65.80% 81.16% 67.68% 8.8%

Long Clip iDT+FV Ave 64.70% 77.98% 68.69% 14.3%
iDT+FV Sample-10 65.90% 80.15% 69.18% 1.8%

Audio MFCC VLAD 17.94% 26.10% 15.47% 19.1%
Fusion all 83.23% 94.24% 89.17%
+OCR 84.26% 94.65% 90.03%
On test set 86.68% 95.53% 91.93%

6. Conclusion
In ActivityNet Challenge 2016, we mainly focused on

multiple visual features and different strategies of feature
quantization. The audio features can help classify some ac-
tivities and OCR can be further employed to improve the
accuracy. Our future works include the exploration of AS-
R and more in-depth studies of how fusion weights of dif-
ferent clues could be determined to boost the classification
performance.
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Abstract

In this paper, we present a method based on the recur-
rent three-dimensional convolutional neural works for ac-
tion recognition in untrimmed long videos. This is vital for
a number of real applications where videos are usually un-
constrained and include extensive background scenes and
activities. In order to address these challenges, we employ
the connectionist temporal classification to train the net-
works to localize the most discriminative actions at the nu-
cleus phase of unsegmented videos. Our proposed method
is evaluated on the benchmark dataset of ActivityNet Chal-
lenge 2016.

1. Introduction
Content based video classification is fundamental to in-

telligent video analytics including automatic categorizing,
searching, indexing, segmentation, and retrieval of videos.
Conventional research primarily devotes to recognize ac-
tions in segmented short videos [4]. However, most user
generated videos (e.g., videos from surveillance and inter-
net portals) are with untrimmed long sequences which could
contain unrelated activities and background scenes. So this
work focuses on predicting the labels of activities present in
long untrimmed videos.

2. Method
As illustrated in Fig. 1, we present a network that em-

ploys the recurrent three-dimensional convolutional neural
networks (3D-CNN) with connectionist temporal classifi-
cation (CTC). 3D-CNN is used to extract spatio-temporal
features in a short-term window, and a recurrent layer is ap-
plied to model the long-term temporal evolution. CTC en-
ables action classification to be based on the nucleus phase
of video without requiring explicit pre-segmentation.

We initialize 3D-CNN with the C3D network [3] pre-
trained on the large-scale Sports1M action recognition
dataset. This networks is consist of 8 convolutional layers

with 3 × 3 × 3 filters and 2 fully connected layers trained
on 16-frame clips. CTC is a cost function designed for se-
quence prediction in unsegmented or weakly segmented in-
put streams [1]. It has been successfully applied for online
detection and classification of dynamic hand gestures [2].
CTC is applied in this work to identify and label the nu-
cleus of an action, while assigning the no action class to the
remaining clips. It is able to solve the alignment of class
labels to particular clips in the video.
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Abstract

This notebook paper describes our system for the
untrimmed classification task in the ActivityNet challenge
2016. We investigate multiple state-of-the-art approaches
for action recognition in long, untrimmed videos. We exploit
hand-crafted motion boundary histogram features as well
feature activations from deep networks such as VGG16,
GoogLeNet, and C3D. These features are separately fed to
linear, one-versus-rest support vector machine classifiers to
produce confidence scores for each action class. These pre-
dictions are then fused along with the softmax scores of the
recent ultra-deep ResNet-101 using weighted averaging.

1. Introduction

Human action recognition in video is a fundamental
problem in computer vision due to its increasing importance
for a range of applications such as video recommendation
and search, video highlighting, video surveillance, human-
robot interaction, human skill evaluation, etc.

The ActivityNet challenge [4] is a large scale bench-
mark designed to stimulate research on human activity un-
derstanding in user generated videos. This challenge con-
sists of two tasks on 200 activity categories: (a) untrimmed
classification and (b) detection. We focus on the former
which involves predicting the activities present in a long
video. Accounting for YouTube blocks and deleted videos,
we downloaded 9942 training, 4874 validation, and 5001
test videos.

2. Recognition Framework

In this section, we present our multi-stream action recog-
nition framework based on: (i) Fisher vector encoded MBH
features, (ii) C3D fc7 features, (iii) GoogLeNet pool5 fea-
tures, (iv) VGG16 pool5 features, and (v) ResNet-101 soft-
max scores. The first two modules are clip-based while the
last three are frame-based. An overview of the framework
can be found in Fig. 1.

Predictions

clip

GoogleNet

C3D

clip
MBH

frame
VGG16

frame
ResNet-101

frame

fc7

pool5

softmax scores

pool5
SVM

SVM

SVM

SVM

Late
Fusion

Figure 1. Multi-stream framework. We combine five modules
using late fusion to obtain the final prediction scores. The MBH
module is hand-crafted, while the rest are based on deep networks.
For ResNet-101, we directly use the softmax scores since this per-
forms better than using the extracted features.

2.1. MBH Features

Improved dense trajectories (IDT) [15] are state-of-the-
art hand-crafted features for modeling temporal information
in videos, and the motion boundary histogram (MBH) fea-
tures are the best performing component of the IDT fea-
tures. We use the provided1 Fisher vector encoded MBH
features [13, 9], whose dimension is 65536 for each video,
to train a linear, one-versus-rest support vector machine
(SVM) classifier. We fix the SVM hyper-parameter C to
100 [2].

2.2. C3D

In [14], the authors show that 2D ConvNets “forget” the
temporal information in the input signal after each convo-
lution. They therefore propose 3D ConvNets, which ana-
lyze sets of contiguous video frames organized as clips, and
show its effectiveness at learning spatio-temporal features
in video volume data analysis problems.

We therefore adopt fc7 features2 extracted from a pre-
trained C3D model as an additional signal. The network
is not fine-tuned on the ActivityNet challenge dataset. The
inputs to the C3D model are 16 frame clips with 50% over-
lap and the outputs are 4096 dimension feature activations.

1The MBH features are provided by the organizers.
2The C3D extracted fc7 features are provided by the organizers.
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These features are reduced to 500 dimensions using PCA.
Average pooling is used to combine the clip-level features
for a single video. Finally, a linear, one-versus-rest SVM is
trained with C set to 1.

2.3. GoogLeNet

We also use features3 extracted from the pool5 layer of
a Google inception net (GoogLeNet) [8]. This network is
an enhanced version of [12] which utilizes a reorganized
hierarchy of the complete ImageNet dataset [1]. The fea-
tures are frame-based and have dimension 1024. They are
mean-pooled across all frames in a video followed by L1-
normalization to obtain a video-level representation. Again,
a linear, one-versus-rest SVM is trained with C set to 1.

2.4. VGG16

VGG16 [11] is a popular deep architecture that demon-
strated good performance on action recognition in [16] us-
ing a two-stream [10] pipeline. We only employ the spatial
stream. We use the pre-trained VGG16 model for initializa-
tion and fine-tune it on the challenge dataset. During fine-
tuning, we perform 60K iterations with learning rate 10−4,
30K iterations with 10−5, and 30K iterations with 10−6.
Momentum and weight decay are set to 0.9 and 5× 10−4.

We adopt the latent concept descriptor (LCD) encoding
method in [17] to encode the pool5 layer of our fine-tuned
VGG16 model, followed by VLAD encoding [6]. We re-
duce the dimensions of the pool5 features from 512 to 256
using PCA. The number of centers in VLAD encoding is
set to 256 and we use VLAD-k with k set to 5. The en-
coded features are then power- and intra-normalized. The
resulting per-frame features have dimension 65536 which
are mean-pooled to obtain a video-level representation. A
linear, one-versus-rest SVM is trained with C set to 1.

2.5. ResNet-101

Residual learning [3] has recently become an effective
method to construct ultra-deep networks for object recogni-
tion and detection. We extend it here to action recognition.
We adopt the pre-trained 101-layer model for initialization
and fine-tune it on the ActivityNet video data. The learning
rate is 10−4 for the first two epochs, 10−5 for the following
two epochs, and 10−6 for the last epoch. Momentum and
weight decay are set to 0.9 and 10−4.

We also investigated using features extracted from last
convolutional module, whose dimension is 2048, to train
an SVM, similar to our other modules. This, however, per-
forms 3.3% worse on the validation set than using the soft-
max scores.

3The GoogLeNet extracted pool5 features are provided by the organiz-
ers.

Model Top-1 Accuracy
(i) MBH 57.32%

(ii) C3D fc7 60.04%
(iii) GoogLeNet pool5 67.13%

(iv) VGG16∗ pool5 63.19%
(v) ResNet-101∗ 71.81%

(i) + (ii) 62.78%
(i) + (iii) 69.40%
(i) + (iv) 68.79%
(ii) + (iii) 68.11%
(ii) + (iv) 64.35%
(iii) + (iv) 68.56%

(ii) + (iii) + (iv) 69.09%
(i) + (v) 73.05%

(ii) + (iii) + (iv) + (v) 73.56%
(i) + (iii) + (iv) + (v) 74.68%

(i) + (ii) + (iii) + (iv) + (v) 75.14%

Table 1. Action recognition results on the validation set of the Ac-
tivityNet challenge 2016. All performances are reported using top-
1 accuracy. Top: Single module performances. Bottom: Fused
module performances. ∗ indicates the network is fine-tuned on the
challenge dataset.

3. Experiment Results

Given a test video, we uniformly sample 25 frames to ex-
tract the frame-level feature activations and perform mean-
pooling to obtain the final video representation.

Late fusion iteratively combines pairs of prediction
scores. First, the outputs of two modules are combined in
a weighted fashion where the scores of the more accurate
module are weighted twice that of the less accurate one.
Additional scores are then combined with this in a similar
fashion. After late fusion, we adopt a Multi-class Iterative
Re-ranking (MIR) method [7] to re-rank the predictions of
classifiers based on the difficulty scale of the videos. Table
1 shows our experimental results on the validation set of the
ActivityNet challenge 2016.

We can see from the top part of Table 1 that the resid-
ual network achieves the best performance among all mod-
ules. It is 14.5% better than the state-of-the-art hand-crafted
MBH features and outperforms the other deep networks.

The bottom part of Table 1 shows the performances of
various module combinations. We observe that combina-
tions that only include deep networks are generally not as
effective as combinations that include the MBH features.
Although the MBH features perform the worst alone, they
are orthogonal to the deep learning based approaches. This
may be attributed to MBH being effective at capturing low-
level motion features while the deep networks model high-



Submission mAP Top-1 Accuracy Top-3 Accuracy
Run 1 68.00% 66.16% 83.36%
Run 2 75.98% 72.48% 87.54%
Run 3 79.41% 76.17% 90.19%
Run 4 81.64% 77.74% 90.93%
Run 5 83.1% 78.44% 91.07%

Table 2. Action recognition results on the test set of the Activi-
tyNet challenge 2016.

level information related to static appearance. The MBH
features and the deep networks are thus quite complemen-
tary. When fusing all modules, our system achieves a vali-
dation accuracy of 75.14%.

We also investigate incorporating action proposals gen-
erated by [5] during prediction. Instead of uniformly sam-
pling 25 frames across the video, we sample 25 frames
from the action proposals. The intuition is that these ac-
tion proposals have a higher probability of containing action
frames, so that the average pooling of these frames should
lead to higher recognition accuracy. However, this turns out
to perform worse than uniform sampling.

4. Submission Details
We use both the training and validation data as the train-

ing set for our submissions. Note, though, that the imple-
mentation details and parameter settings remain the same as
when we use only the training data to train. We do not use
the test data for training or parameter tuning.

We submit five runs to the evaluation server, and the per-
formance for each run is shown in Table 2. Our runs are as
follows:

• Run 1: VGG16

• Run 2: VGG16 + MBH

• Run 3: VGG16 + MBH + ResNet-101

• Run 4: VGG16 + MBH + ResNet-101 + GoogLeNet

• Run 5: VGG16 + MBH + ResNet-101 + GoogLeNet +
C3D

5. Conclusion
We show that the ultra-deep architecture of ResNet is in-

deed helpful in learning discriminative features for complex
tasks, such as human activity understanding. In addition,
although hand-crafted MBH features achieve the lowest ac-
curacy alone, they are complementary to approaches based
on deep networks. Finally, the combination of all modules
using late fusion gives the best performance.
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